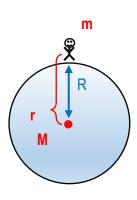

CONCEPT: Acceleration Due to Gravity

ullet Use Newton's Law of Gravity to determine the acceleration due to gravity ($a_g \rightarrow g$) at different distances from a planet.


Any Distance

On Surface

- Use **g** when specifically given/asked for _____. Use **g**_{surf} when on the _____. ("surface gravity")
- Note that both g's only depends on (M | m)
- g_{surf} is a local <u>constant</u>, g decreases as r ______.
- Your weight at *any* distance from a planet is the force of gravity \rightarrow W = F_G = $\frac{GMm}{r^2}$ = _____.
 - On the surface, W = _____.

<u>EXAMPLE</u>: Compare the exact acceleration due to gravity on the top of Mount Everest, which has a height of 8.85km, with the surface gravity of the Earth.

GRAV. CONSTANTS $G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$ $M_E = 5.97 \times 10^{24} \text{ kg}$ $R_E = 6.37 \times 10^6 \text{ m}$

<u>PRACTICE</u>: You stand on the surface of a mysterious planet with a mass of 6×10^{24} kg and measure the surface gravity to be 7 m/s². What must the radius of the planet be?

EQUATIONS	GRAV. CONSTANTS
$\begin{aligned} F_G &= \frac{Gm_1m_2}{r^2} & r = R + h \\ g &= \frac{GM}{r^2} & g_{surf} &= \frac{GM}{R^2} \end{aligned}$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$ $M_E = 5.97 \times 10^{24} kg$ $R_E = 6.37 \times 10^6 m$

<u>EXAMPLE</u>: An astronaut drops a rock from rest on the surface of an unknown planet. It takes 0.6 seconds to fall 1.5m. If the radius of this unknown planet is 4×10^6 m, what is the mass?

EQUATIONS	GRAV. CONSTANTS
$\begin{aligned} F_G &= \frac{Gm_1m_2}{r^2} & r = R + h \\ g &= \frac{GM}{r^2} & g_{surf} &= \frac{GM}{R^2} \end{aligned}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\mathrm{kg \cdot s^2}}$ $M_E = 5.97 \times 10^{24} \text{ kg}$ $R_E = 6.37 \times 10^6 \text{ m}$

PRACTICE: How far would you have to be above Earth's surface for g to be $\frac{1}{2}$ of its surface value?

EQUATIONS	GRAV. CONSTANTS
$\begin{aligned} F_G &= \frac{Gm_1m_2}{r^2} & r = R + h \\ g &= \frac{GM}{r^2} & g_{surf} &= \frac{GM}{R^2} \end{aligned}$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$ $M_E = 5.97 \times 10^{24} kg$ $R_E = 6.37 \times 10^6 m$