CONCEPT: CONCEPTUAL PROBLEMS WITH POSITION-TIME GRAPHS

• You'll need to interpret position-time graphs to solve conceptual questions about position, velocity & acceleration.

<u>EXAMPLE</u>: The figure shows a position-graph for a moving object. At which lettered point(s):

- 1) is the object at the origin?
- 2) is the object the farthest away from the origin?
- 3) is the object moving forwards?
- 4) is the object moving backwards?
- 5) is the object at rest?
- 6) is the object's acceleration positive?
- 7) is the object's acceleration negative?

STEPS

- 1) Identify Variable: [Position | Velocity (Speed) | Accel.]
- 2) Identify Graph Feature: [Value | Slope | Curvature]
- 3) Identify Qualifier: [+ |- | 0 | Up | Down | Sign Change | max. | min.]
- 4) Interpret from Graph

	Position (x)	Velocity (v) (or Speed)	Acceleration (a)
	Value	Slope	Curvature
Х-Т			

EXAMPLE: Using the position-time graph for a moving car, determine the lettered point(s) where the car:

- 1) is moving fastest?
- 2) is moving slowest?
- 3) turns around?
- 4) is speeding up?
- 5) is slowing down?

STEPS

- 1) Identify Variable: [Position | Velocity (Speed) | Accel.]
- 2) Identify Graph Feature: [Value | Slope | Curvature]
- 3) Identify Qualifier: [+ | | 0 | Up | Down | Sign Change | max. | min.]
- 4) Interpret from Graph

	Position (x)	Velocity (v) (or Speed)	Acceleration (a)
	Value	Slope	Curvature
Х-Т	+ 0	+v ₁ Steeper = faster +v ₂ v=0	+a /-a

<u>PRACTICE</u>: The position of an object vibrating on a moving spring is represented by the diagram below. Which of the following answer choices is true of the velocity and acceleration at Point **P**?

- (a) The velocity is positive and the acceleration is positive
- (b) The velocity is positive and the acceleration is negative
- (c) The velocity is **negative** and the acceleration is **positive**
- (d) The velocity is negative and the acceleration is negative

EXAMPLE: The figure shows the position-time graphs for two moving bicycles, labeled **A** and **B**.

- (a) At what time(s) do the bicycles have the same position?
- (b) At what time(s) do the bicycles have roughly the same velocity?

