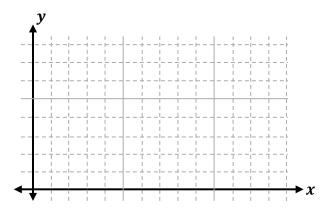
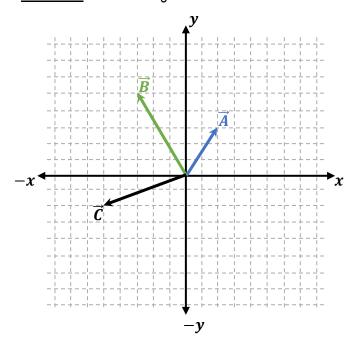

CONCEPT: ADDING VECTORS GRAPHICALLY

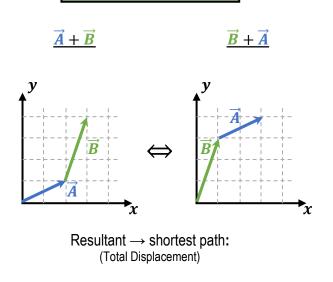
• Vectors are drawn as arrows and are added by _____ the arrows (tip-to-tail).



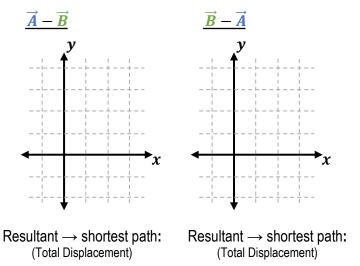
- The **RESULTANT** vector $(\vec{C} \text{ or } \vec{R})$ is always the **SHORTEST PATH** from the **start** of the first vector \rightarrow **end** of the last.
 - Adding vectors does **NOT** depend on the order (commutative), so $\vec{A} + \vec{B} = \vec{B} + \vec{A}$.


EXAMPLE: Find the magnitude of the Resultant Vector $\vec{c} = \vec{A} + \vec{B}$.

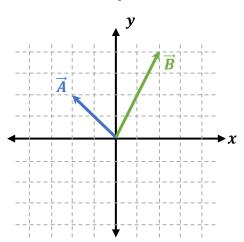
<u>PRACTICE</u>: A delivery truck travels 8 miles in the +x-direction, 5 miles in the +y-direction, and 4 miles again in the +x-direction. What is the magnitude (in miles) of its final displacement from the origin?


EXAMPLE: Find the magnitude of the Resultant Vector $\overrightarrow{D} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$.

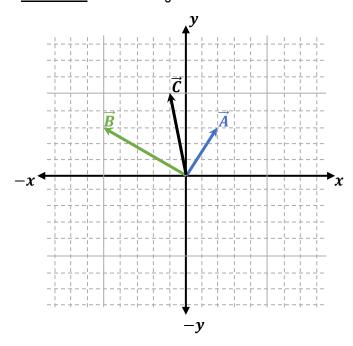
CONCEPT: SUBTRACTING VECTORS GRAPHICALLY


• Subtracting vectors is exactly like adding vectors tip-to-tail, but one (or more) of the vectors gets _____

ADDING VECTORS

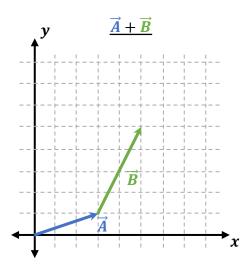

• When adding, order [DOES | DOES NOT] matter

SUBTRACTING VECTORS

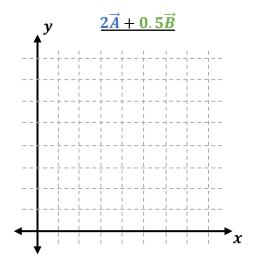


- "Negative" vector: SAME magnitude, _____ direction
- When subtracting, order [DOES | DOES NOT] matter

EXAMPLE: Find the magnitude of the Resultant Vector $\vec{c} = \vec{A} - \vec{B}$.

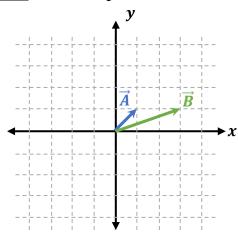

<u>PRACTICE</u>: Find the magnitude of the Resultant Vector $\overrightarrow{D} = \overrightarrow{C} - \overrightarrow{B} - \overrightarrow{A}$.

CONCEPT: ADDING MULTIPLES OF VECTORS


• When you multiply a vector by a number $(\vec{A} \to 2\vec{A})$, the <u>magnitude</u> (length) changes but NOT the direction.

ADDING VECTORS

Resultant Vector → Shortest Path: (Total Displacement)


ADDING MULTIPLES OF VECTORS

Resultant Vector → Shortest Path: (Total Displacement)

- Multiplying by > 1 [increases | decreases] magnitude/length
- Multiplying by < 1 [increases | decreases] magnitude/length

EXAMPLE: Find the magnitude of the Resultant Vector $\vec{c} = 3\vec{A} - 2\vec{B}$.

