CONCEPT: INTRO TO POLARIZATION

- The **polarization** of an EM wave is ALWAYS the ______ that the _____ oscillates along.
 - UNpolarized light = Electric Fields point in many random directions

- Polarizers are filters that only allow light components _____ to its transmission axis to pass through.
 - When unpolarized light (I_0) passes through a polarizer, intensity I decreases by ____ and becomes polarized.

EXAMPLE: For the above diagram, if the intensity of the unpolarized light was 100 W/m², what is the intensity of the transmitted light?

 $\underline{\mathsf{PROBLEM}}\text{: Unpolarized light with intensity of 6 W/m}^2 \text{ is incident on a polarizer. If the polarizer's transmission axis is at an angle of 45° above the horizontal, draw a diagram of this system and find the intensity of transmitted light.}$

E.M. WAVES EQUATIONS

 $I = \frac{1}{2}I_0$ (if I_0 is unpolarized)

CONCEPT: MULTIPLE POLARIZERS AND MALUS'S LAW

- Remember: Unpolarized light becomes polarized when it passes through a polarizer & decreases in intensity.
 - If polarized light passes through another polarizer ("analyzer") oriented at a different _____:
 - 1) The light is polarized in the direction of the ______
 - 2) intensity decreases *again*, based on the ______ angle *between* the 2 polarizers.

$$I = \frac{1}{2}I_0$$

(One-Half Rule, use only when light is **UN**polarized)

(Cosine-Squared Rule, use only when light is **polarized**)

"Malus's Law"

EXAMPLE: Unpolarized light with an intensity of 100 W/m² passes through 2 polarizers. The 1st makes an angle of 30° with the vertical, and the 2nd is oriented along the horizontal axis. What is the intensity of light after passing both polarizers?

POLARIZATION

- 1) Draw diagram, label initial light as I_0
- 2) For each "nth" polarizer:

Use
$$I_n = \frac{1}{2}I_{n-1} \frac{OR}{OR}I_n = I_{n-1}\cos^2\theta$$

3) Solve for Target

PROBLEM: Horizontally polarized light is incident on a polarization filter. Initially, the intensity of the light is 0.55 W/m², and 0.40W/m² after passing through the filter. Calculate the angle of the transmission axis of the polarization filter, with respect to the horizontal.

POLARIZATION

- 1) Draw diagram, label initial light as I_0
- 2) For each "nth" polarizer:
 - a) Use $I_n = \frac{1}{2}I_{n-1}$ OR $I_n = I_{n-1}\cos^2\theta$ b) If using \cos^2 EQ, find θ between polarizers
- 3) Solve for Target

PROBLEM: Sunlight is unpolarized light that has an average intensity of 1350 W/m² near the Earth's surface.

- **a)** If sunlight passes through two polarizers angled 90° with respect to each other, find the intensity of the light after passing through the second polarizer.
- **b)** A third filter with a transmission axis at an angle of 30° to the horizontal is inserted between the first two. Find the intensity of the sunlight after passing through all three polarizers.

POLARIZATION

- 1) Draw diagram, label initial light as I_0
- 2) For each "nth" polarizer:
 - a) Use $I_n = \frac{1}{2}I_{n-1} \frac{OR}{I_n} I_n = I_{n-1} \cos^2 \theta$
 - **b)** If using $\cos^2 EQ$, find θ **between** polarizers
- 3) Solve for Target