CONCEPT: DIMENSIONAL ANALYSIS - Equations work only if they are *dimensionally consistent*, meaning the units on both sides are ______ - Easy way to check if equations make sense *without* calculations. EXAMPLE: You walk a constant speed v = 5m/s for a time t of 2s. Which equation from below would be appropriate for determining the distance d in meters? OR ## **DIMENSIONAL CONSISTENCY** - 1) Replace variables with units - 2) Ignore signs & numbers (2, ½, etc..) - 3) Multiply & divide to cancel out units - 4) Check if units on left = units on right [CONSISTENT | INCONSISTENT] [CONSISTENT | INCONSISTENT] ## **DETERMINING UNITS OF UNKOWN VARIABLES** • You'll also need Dimensional Analysis to figure out the units of unknown variables. <u>EXAMPLE</u>: Hooke's Law states that a restoring Force \mathbf{F} , measured in Newtons [N], in springs is related to the distance from equilibrium \mathbf{x} by the equation $\mathbf{F} = -\mathbf{k}\mathbf{x}$. What are the units of the force constant \mathbf{k} ? ## **SOLVING UNITS OF VARIABLES** - 1) Replace variables with units - 2) Ignore signs & numbers (2, ½, etc..) - 3) Isolate unknown variable - 4) Solve <u>PRACTICE</u>: A box moving with an initial speed \mathbf{v} is accelerated horizontally. If \mathbf{x} is measured in [m], \mathbf{v} in [m/s], \mathbf{a} in [m/s²], \mathbf{t} in [s] which of the following equations is correct for solving the distance \mathbf{x} ? - **A)** $x = \frac{a}{t^2}$ - **B)** $x = v + \frac{1}{2}$ at - **C)** $x = vt + \frac{1}{2} at^2$ PRACTICE: Newton's Law of Gravitation describes the attraction force between two masses. The equation is $F = G \frac{m_1 m_2}{r^2}$, where F is in $[\frac{kg \cdot m}{s^2}]$, m_1 and m_2 are masses in [kg], and r is the distance in [m] between them. Determine the units of the Universal Constant G. $$\mathbf{A)}\,\frac{kg\cdot s^2}{m^3}$$ $$\mathbf{B)}\,\frac{m^3}{kg\cdot s^2}$$ C) $$\frac{m}{s^2}$$ **D)** $$\frac{m^3}{s^2}$$