CONCEPT: DIMENSIONAL ANALYSIS

- Equations work only if they are *dimensionally consistent*, meaning the units on both sides are ______
 - Easy way to check if equations make sense *without* calculations.

EXAMPLE: You walk a constant speed v = 5m/s for a time t of 2s. Which equation from below would be appropriate for determining the distance d in meters?

OR

DIMENSIONAL CONSISTENCY

- 1) Replace variables with units
- 2) Ignore signs & numbers (2, ½, etc..)
- 3) Multiply & divide to cancel out units
- 4) Check if units on left = units on right

[CONSISTENT | INCONSISTENT]

[CONSISTENT | INCONSISTENT]

DETERMINING UNITS OF UNKOWN VARIABLES

• You'll also need Dimensional Analysis to figure out the units of unknown variables.

<u>EXAMPLE</u>: Hooke's Law states that a restoring Force \mathbf{F} , measured in Newtons [N], in springs is related to the distance from equilibrium \mathbf{x} by the equation $\mathbf{F} = -\mathbf{k}\mathbf{x}$. What are the units of the force constant \mathbf{k} ?

SOLVING UNITS OF VARIABLES

- 1) Replace variables with units
- 2) Ignore signs & numbers (2, ½, etc..)
- 3) Isolate unknown variable
- 4) Solve

<u>PRACTICE</u>: A box moving with an initial speed \mathbf{v} is accelerated horizontally. If \mathbf{x} is measured in [m], \mathbf{v} in [m/s], \mathbf{a} in [m/s²], \mathbf{t} in [s] which of the following equations is correct for solving the distance \mathbf{x} ?

- **A)** $x = \frac{a}{t^2}$
- **B)** $x = v + \frac{1}{2}$ at
- **C)** $x = vt + \frac{1}{2} at^2$

PRACTICE: Newton's Law of Gravitation describes the attraction force between two masses. The equation is

 $F = G \frac{m_1 m_2}{r^2}$, where F is in $[\frac{kg \cdot m}{s^2}]$, m_1 and m_2 are masses in [kg], and r is the distance in [m] between them.

Determine the units of the Universal Constant G.

$$\mathbf{A)}\,\frac{kg\cdot s^2}{m^3}$$

$$\mathbf{B)}\,\frac{m^3}{kg\cdot s^2}$$

C)
$$\frac{m}{s^2}$$

D)
$$\frac{m^3}{s^2}$$