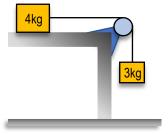
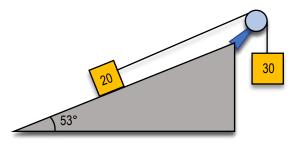

CONCEPT: SOLVING CONNECTED SYSTEMS OF OBJECTS WITH ENERGY CONSERVATION

- You can often solve problems with *multiple* objects using Energy, but you must consider the energies of EACH object.
 - Remember: Connected objects move together with the same \vec{a} and $|\vec{v}|!$


<u>EXAMPLE</u>: The system is released from rest. If the 5kg block is initially 3m above the floor, use <u>Energy Conservation</u> to calculate its speed just before hitting the ground. Ignore the effects of friction and any mass of the string and pulley.

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve


<u>PROBLEM</u>: A 3-kg block hangs 2m above the floor. It is connected via cable & pulley to a 4-kg block on a rough table with a coefficient of friction μ_k = 0.5. If the system is released from rest, find the speed of the 3-kg block just before hitting the floor.

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ3) Eliminate & expand terms
- 4) Solve

<u>PROBLEM</u>: A 30 kg block hangs above the floor, connected via cable & pulley to a 20 kg block on a smooth inclined plane angled 53° above the horizontal. If released from rest, calculate the speed of the system when the 30 kg has moved 1m.

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve