CONCEPT: CAPACITORS

Two parallel plates of <u>equal and opposite</u> charge produce a	electric field between them.
 UNIFORM = same magnitude everywhere always. 	
- Electric field points (FROM TO) positive plate (FROM TO) negative p	olate.

- These are known as CAPACITORS → Things that ______.
 - Between plates, $\mathbf{E} = \underline{\hspace{1cm}}$ Outside of plates, $\mathbf{E} = \underline{\hspace{1cm}}$
 - ϵ_0 is the VACUUM PERMITTIVITY, and $\epsilon_0 =$
 - ${\bf Q}$ is the charge on \underline{each} plate, ${\bf A}$ is the area of each plate.

EXAMPLE: The electric field between two parallel plates is 1000 N/C. If the plates have an area of 5 cm², what is the charge on each plate?

<u>EXAMPLE</u>: A capacitor produces an electric field *E* when it is formed by two plates that have charges Q and –Q. What happens to the electric field is the charge doubles, but the area of the plates half?

PRACTICE: KINEMATICS IN A CAPACITOR

An electron moves into a capacitor at an initial speed of 150 m/s. If the electron enters exactly halfway between the plates, how far will the electron move horizontally before it strikes one of the plates? Which plate will it strike?

