CONCEPT: MOLES & AVOGADROS NUMBER

• Normally we use the mass of a material, but you'll need to know the *moles* or # of particles.

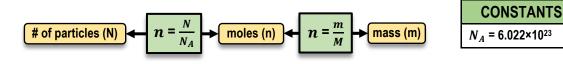
- Mole (n) = the _____ of material equal to N_A = _____ particles ← known as <u>Avogadro's Number</u>.

- This applies to \underline{ANY} substance: $\begin{cases} 1 \text{ mol Nitrogen (N)} = 6.022 \times 10^{23} \text{ N atoms} \\ 1 \text{ mol H}_2\text{O} &= 6.022 \times 10^{23} \text{ H}_2\text{O molecules} \\ 1 \text{ mol dollars} &= 6.022 \times 10^{23} \text{ dollars} \end{cases}$

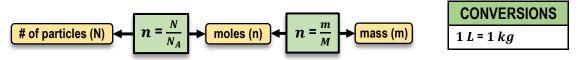
• You'll need to know how to convert between mass, moles, and # of particles.

M = molar mass of material (a.k.a atomic mass in any periodic table, expressed in $\frac{g}{mol}$)

EXAMPLE: Calculate the following:


a) How many moles is 8.33×10³⁷ Carbon atoms?

b) How many grams of aluminum is 2.35 mol Al? (Molar mass Al = 26.98)


c) How many particles are in 24g of H₂0? (Molar mass H₂0 = 18.02 g/mol)

PROBLEM: If the molar mass of hydrogen is 1.008 g/mol, what is the mass (in grams) of 2 hydrogen atoms?

- **A)** 0.5004
- **B)** 3.35×10⁻²⁴
- **C)** 2.016
- **D)** 1.69×10⁻²⁴

PROBLEM: If the molar mass of water (H₂O) is 18 g/mol, how many molecules of H₂O are in a 1.5L bottle of water?

