CONCEPT: STATIC FRICTION • Static Friction is another type of friction similar to kinetic friction. # **KINETIC FRICTION** - When $v \neq 0$ - Tries to <u>stop</u> objects already moving - Direction: opposite of motion (\vec{v}) $$f_k = \mu_k N$$ ### STATIC FRICTION - When v ____ 0 - Tries to _____ an object from starting to move - Direction: ______ to where the object would move without friction. $$f_{s,}$$ = , μ_s = coeff. of static friction; μ_s always μ_k <u>EXAMPLE</u>: A 5.1kg block is at rest on the floor. The coefficients of static & kinetic friction are 0.6 and 0.3, respectively. Determine the magnitude of the friction force on the block when you push it with a force of: a) $$F = 20N$$ b) $$F = 40N$$ - μ_s N is a threshold: the force you must overcome to <u>get</u> an object moving, so μ_s N is the _____ value of f_s : f_s ___=__ - This is **NOT** always the actual friction acting on an object. To determine if f_s vs. f_k , compare F to $f_{s,max}$: | IS F STRONG ENOUGH TO GET OBJECT MOVING? | | | |--|--------------------------------------|-------------------------------------| | | NO (F <i>f</i> _{s,max}) | YES (F f_s,max) | | Object | [STAYS AT REST STARTS MOVING] | [STAYS AT REST STARTS MOVING] | | Friction is | [STATIC (f_s) KINETIC (f_k)] | [STATIC (f_s) KINETIC (f_k)] | <u>PROBLEM</u>: A 5.1 kg block is at rest on the floor. The coefficients of static & kinetic friction are $\mu_s = 0.7$ and $\mu_k = 0.5$. Calculate the force needed to **get the block moving**, and the force needed to **keep** it moving at **constant speed**. - **A)** F = 0.014 N; F = 0.01 N - **B)** F = 3.57 N; F = 2.55 N - **C)** F = 35; F = 25 - D) Impossible to tell #### **FRICTION** - 1) Draw FBD - 2) Determine if $f = f_s$ or f_k from text or: If Σ Fs on axis of motion > $f_{s,max}$, $f = f_k$ - 3) Write $\Sigma F = ma$ - 4) Solve • Remember: $\mu_s \ge \mu_k!$ It's always harder to [GET | KEEP] something moving than it is to [GET | KEEP] it moving. <u>PROBLEM</u>: A 15 kg block is initially at rest on a horizontal surface. The coefficient of static friction between the block and the surface is μ_s =0.7. How hard must you push *down* on the block to keep a 300 N horizontal force from moving it? - **A)** 147 N - **B)** 210 N - **C)** 282 N - **D)** 429 N #### **FRICTION** - 1) Draw FBD - 2) Determine if $f = f_s$ or f_k from text or: If Σ Fs on axis of motion > $f_{s,max}$, $f = f_k$ - 3) Write $\Sigma F = ma$ - 4) Solve <u>PROBLEM</u>: A 36N force is needed to start a 7.0 kg box moving across the floor. If the 36.0 N force continues, the box accelerates at 0.70 m/s². What are the coefficients of static and kinetic friction? - **A)** μ_s =0.52 and μ_k =0.64 - **B)** μ_s =0.64 and μ_k =0.64 - **C)** $\mu_s = 0.52$ and $\mu_k = 0.45$ - **D)** μ_s =0.45 and μ_k =0.32 # **FRICTION** - 1) Draw FBD - 2) Determine if $f = f_s$ or f_k from text or: If Σ Fs on axis of motion > f_{s,max}, $f = f_k$ - 3) Write $\Sigma F = ma$ - 4) Solve