CONCEPT: CONCEPTUAL PROBLEMS WITH VELOCITY-TIME GRAPHS

• You'll need to interpret velocity-time graphs to solve conceptual questions about position, velocity & acceleration.

<u>EXAMPLE</u>: The figure shows the velocity graph for a moving box. At which lettered point(s):

- 1) is the box moving forwards?
- 2) is the box moving backwards?
- 3) is the box at rest?
- 4) is the box turning around?
- 5) is the box's acceleration positive?
- 6) is the box's acceleration negative?
- 7) is the box accelerating the fastest?
- 8) is the box speeding up?

STEPS

- 1) Identify Variable: [Position | Velocity (Speed) | Accel.]
- 2) Identify Graph Feature: [Value | Slope | Curvature]
- 3) Identify Qualifier: [+ | | 0 | Up | Down | Sign Change | max. | min.]
- 4) Interpret from Graph

	Position (x) (or Displacement)	Velocity (v) (or Speed)	Acceleration (a)
	Value	Slope	Curvature
X-	$\begin{array}{c} x \\ + \\ - t \end{array}$	+v ₁ >v ₂ Steeper = faster +v ₂ v=0	Slowing Speeding down up -a
	Area	Value	Slope
V-			