CONCEPT: CONCEPTUAL PROBLEMS WITH VELOCITY-TIME GRAPHS • You'll need to interpret velocity-time graphs to solve conceptual questions about position, velocity & acceleration. <u>EXAMPLE</u>: The figure shows the velocity graph for a moving box. At which lettered point(s): - 1) is the box moving forwards? - 2) is the box moving backwards? - 3) is the box at rest? - 4) is the box turning around? - 5) is the box's acceleration positive? - 6) is the box's acceleration negative? - 7) is the box accelerating the fastest? - 8) is the box speeding up? ## **STEPS** - 1) Identify Variable: [Position | Velocity (Speed) | Accel.] - 2) Identify Graph Feature: [Value | Slope | Curvature] - 3) Identify Qualifier: [+ | | 0 | Up | Down | Sign Change | max. | min.] - 4) Interpret from Graph | | Position (x) (or Displacement) | Velocity (v)
(or Speed) | Acceleration (a) | |----|--|---|-----------------------------| | | Value | Slope | Curvature | | X- | $\begin{array}{c} x \\ + \\ - t \end{array}$ | +v ₁ >v ₂ Steeper
= faster
+v ₂
v=0 | Slowing Speeding down up -a | | | Area | Value | Slope | | V- | | | |