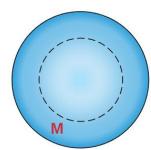

CONCEPT: Gravitational Force Inside Earth

• Remember: The force of gravity acts as if all the mass ______ you was concentrated at the center of mass.



- This works if we approximate the density of the Earth to be ______.

- F_{g,inside} increases proportional to r.
- F_g decreases proportional to $\frac{1}{r^2}$.
- At Earth's center, you'd be _____!

<u>EXAMPLE</u>: A person with a surface weight of 780N drills a hole in the Earth and ventures down. How far from the center of the Earth would their weight be 80% of the surface value? Express this as a multiple of the Earth's radius.

EQUATIONS	CONSTANTS
$\mathbf{F}_{\mathbf{G}} = \frac{\mathbf{G}\mathbf{m}_{1}\mathbf{m}_{2}}{\mathbf{r}^{2}} \mathbf{r} = \mathbf{R} + \mathbf{h}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}$
$g_{surf} = \frac{GM}{R^2}$ $g = \frac{GM}{r^2}$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$F_{G(inside)} = \frac{GMm}{R^3}r$	R _E = 6.37×10 ⁶ m

<u>PRACTICE</u>: A uniform, solid, 1600.0 kg sphere has a radius of 5.00 m. Find the gravitational force this sphere exerts on a 2.10 kg point mass placed at the following distances from the center of the sphere: (a) 5.10 m, and (b) 2.55 m.

EQUATIONS	CONSTANTS
$F_G = \frac{Gm_1m_2}{r^2} r = R + h$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$
$\mathbf{g}_{\mathrm{surf}} = \frac{\mathrm{GM}}{\mathrm{R}^2} \qquad \mathbf{g} = \frac{\mathrm{GM}}{\mathrm{r}^2}$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$F_{\text{inside}} = \frac{GMm}{r^3}r$	$R_E = 6.37 \times 10^6 \text{ m}$
rinside R3	r _{Sun-Earth} = 1.5×10 ¹¹ m
	c = 3×108 m/s