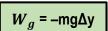

CONCEPT: GRAVITATIONAL POTENTIAL ENERGY

wechanicai Energy		
Kinetic	Potential	
	Flastic	Gravitational


- As objects fall, gravity does WORK on them and they fall faster (v __, KE __).
- This Energy must come from **somewhere**. KE is **transferred** from another *type* of Energy called ______.
 - Gravitational POTENTIAL Energy (\mathbf{U}_g) is "_____" energy due to an object's _____:

EXAMPLE: You drop a 5.1kg box from 10m, and it falls to a height of 4m. (a) Calculate the initial Gravitational Potential Energy. (b) Calculate the final Gravitational Potential Energy. (c) Find the change in Gravitational Potential Energy.

m

$$\Delta U_g$$
 = _____

 W_g = _____

• The WORK done by Gravity is the _____ in Gravitational Potential Energy!

IF no other forces are acting:

- As objects FALL , W_g is [+ |], KE [INCREASES | DECREASES], U_g [INCREASES | DECREASES]
- As objects $\it RISE$, $\it W_g$ is [+ |], KE [INCREASES | DECREASES], $\it U_g$ [INCREASES | DECREASES]

PROBLEM: A 2-kg ball initially 6m above the ground falls to a height of 3m. a) Calculate the change in Grav. Potential Energy if you choose the ground (y=0) to be where $U_g = 0$. b) Calculate the change in Grav. Potential Energy if you choose y = 6 to be where $U_g = 0$.

$$\begin{aligned} & \textbf{GRAV. POT. ENERGY} \\ & W_g = -mg\Delta y = -\Delta U_g \\ & U_g = mgy \\ & \Delta U_g = mg\Delta y \end{aligned}$$

- In Energy problems, Grav. Potential Energy is always calculated relative to an arbitrary reference point.
 - When calculating ΔU_G , only the _____ in height is important, not the initial or final height!
 - If you know Δy , you can set the "ground level" ($U_g = \underline{\hspace{0.5cm}}$) wherever, but usually pick the <u>lowest point</u> of the problem.