CONCEPT: Energy in Simple Pendulums

Just like mass-spring systems, energy in pendulums → 2 types: _____ and _____.

Energy in Mass-Springs	
Amplitude:	EQ:
Elastic: Max	Elastic: 0
Kinetic: 0	Kinetic: Max
Total ME: 1/2kA ²	Total ME: 1/2mv _{max} ²

• For any θ , height

h = _____

Amplitude:

Grav. Potential = mgh = 0 / max

Kinetic Energy = $\frac{1}{2}mv^2 = 0 / \text{max}$

Total M.E. = _____

Equilibrium:

Grav. Potential = mgh = 0 / max

Kinetic Energy = $\frac{1}{2}mv^2 = 0 / \text{max}$

Total M.E. = _____

Any other Point:

Grav. Potential = mgh

Kinetic Energy = $\frac{1}{2}mv^2$

Total M.E. = _____+__

(Energy Conservation for Pendulums)

<u>EXAMPLE</u>: A mass \mathbf{m} is attached to a pendulum of length \mathbf{L} . It is pulled up an angle $\boldsymbol{\theta}$ and released. Using energy conservation, derive an expression for the maximum speed this mass experiences.

EXAMPLE: A mass of 0.400 kg hangs from a 2m pendulum. At the moment when it makes a 5° with the vertical, it has a speed of 1.5 m/s. What is the maximum height the pendulum will reach?

Pendulum SHM Equations

$$|F_S| = |F_A| = -mg\theta$$

$$a = -g\theta = -\frac{g}{L}x$$

$$\omega = 2\pi f = \frac{2\pi}{T} = \sqrt{\frac{g}{L}}$$

$$N \text{ [cycles]} = \frac{t \text{ [time]}}{T \text{ [Period]}} = t * f$$

$$\theta(t) = \theta_{max} cos(\omega t)$$

$$v_{max} = \sqrt{2gL(1 - \cos\theta_{max})}$$

$$h = L(1 - \cos\theta)$$

$$h = L(1 - \cos\theta)$$

$$M.E. = mgh_{max} = \frac{1}{2}mv_{max}^2 = mgh_p + \frac{1}{2}mv_p^2$$

<u>PRACTICE</u>: A mass swinging at the end of a pendulum has a speed of 1.32m/s at the bottom of its swing. At the top of its swing, it makes a 9° with the vertical. What is the length of the pendulum?

Pendulum SHM Equations

$$|F_R| = -mg\theta$$

$$a = -g\theta = -\frac{g}{L}x$$

$$\omega = 2\pi f = \frac{2\pi}{T} = \sqrt{\frac{g}{L}}$$

$$N [cycles] = \frac{t [time]}{T [Period]} = t * f$$

$$\theta(t) = \theta_{max} cos(\omega t)$$

$$A = L\theta$$

$$v_{max} = \sqrt{2gL(1-\cos\theta_{max})} \qquad \rightarrow {\rm V_{max}} = {\rm A}\omega$$

$$h = L(1 - \cos\theta)$$

$$M.E. = mgh_{max} = \frac{1}{2}mv_{max}^2 = mgh_p + \frac{1}{2}mv_p^2$$