CONCEPT: CALCULATING CHANGES IN VELOCITY FROM ACCELERATION-TIME GRAPHS • Calculating velocity changes from acceleration-time graphs is *just* like calculating displacement from velocity-time graphs! **Velocity-Time Graphs** • Area under "curve" (graph) \Rightarrow [$\Delta x \mid \Delta v$] **Acceleration-Time Graphs** ullet Area under "curve" (graph) \Rightarrow [$\Delta x \mid \Delta v$] EXAMPLE: The acceleration-time graph is shown for a box initially at rest. - a) What is the box's velocity at t=3.0s? - b) What is the box's velocity at t=5.0s? - Areas <u>above</u> the **time** axis \rightarrow [POSITIVE | NEGATIVE] Δv - ullet Areas <u>below</u> the **time** axis ullet [POSITIVE | NEGATIVE] Δv <u>EXAMPLE</u>: The figure shows the acceleration graph for a sliding block with an initial velocity of v_0 =3m/s at t=0s. What is the block's final velocity at t=5.0s?