CONCEPT: CALCULATING CHANGES IN VELOCITY FROM ACCELERATION-TIME GRAPHS

• Calculating velocity changes from acceleration-time graphs is *just* like calculating displacement from velocity-time graphs!

Velocity-Time Graphs

• Area under "curve" (graph) \Rightarrow [$\Delta x \mid \Delta v$]

Acceleration-Time Graphs

ullet Area under "curve" (graph) \Rightarrow [$\Delta x \mid \Delta v$]

EXAMPLE: The acceleration-time graph is shown for a box initially at rest.

- a) What is the box's velocity at t=3.0s?
- b) What is the box's velocity at t=5.0s?

- Areas <u>above</u> the **time** axis \rightarrow [POSITIVE | NEGATIVE] Δv
- ullet Areas <u>below</u> the **time** axis ullet [POSITIVE | NEGATIVE] Δv

<u>EXAMPLE</u>: The figure shows the acceleration graph for a sliding block with an initial velocity of v_0 =3m/s at t=0s. What is the block's final velocity at t=5.0s?

