CONSERVATION OF ENERGY / ROLLING MOTION

Remember: If an object mo	ves while rotating (Rolling	<u>Motion</u>	on a surface without slip	ping	→ v,cm = _		_
- In order for an object	ct to start rotating, or to rot	ate faste	er (), there needs to b	e		_(_).
- The role of	in Rolling Motion is to	"conver	t" some into	_(into).	
- Unless otherwise stated, does this without dissipating any energy → W					W =		
- To summarize:	If α ≠ 0	\rightarrow	there is	but		<u></u> .	
	If "without slipping"	\rightarrow	there is				

<u>EXAMPLE</u>: A solid cylinder of mass M and radius R is released from rest from the top of an inclined plane of length L that makes an angle of **9** with the horizontal. The cylinder rolls without slipping. Derive expressions for the linear and angular speeds that the cylinder will have at the bottom of the plane.

PRACTICE: SPHERE GOING UP A HILL / MAX HEIGHT

<u>PRACTICE</u>: A solid sphere of mass M = 10 kg and radius R = 2 is rolling without slipping with speed V = 5 m/s on a flat surface when it reaches the bottom of an inclined plane that makes an angle of Θ = 37° with the horizontal. The plane has just enough friction to cause the sphere to roll without slipping while going up. What maximum height will the sphere attain?

EXAMPLE: ROLLING SPHERE / ROUGH AND SMOOTH HILLS

EXAMPLE: A solid sphere of mass M and radius R is initially at rest at the top of a rough hill of height H_1 . The sphere rolls down the rough hill, then rides on a smooth horizontal surface, then goes up a long, smooth hill. The first hill (rough) has enough friction to cause the sphere to roll without slipping. What maximum height H_2 , in terms of H_1 and other variables, will the sphere attain on the second hill (smooth)? $\rightarrow BONUS$: Why are the two heights different?

PRACTICE: SPHERE ON LOOP-THE-LOOP / SPEED AT BOTTOM

<u>PRACTICE</u>: You may remember that the lowest speed that an object may have at the top of a loop-the-loop of radius \mathbf{R} , so that it completes the loop without falling, is $\sqrt{\mathbf{g}\mathbf{R}}$. Calculate the lowest speed that a solid sphere must have at the bottom of a loop-the-loop, so that it reaches the top with enough speed to complete the loop. Assume the sphere rolls without slipping.