## **CONCEPT: MAGNETIC FIELD BY TOROIDAL SOLENOIDS**

- Remember: Magnetic Field at the center of a LOOP
  → B =
  - Magnetic Field at the center of a SOLENOID → B =
- Solenoids can be arranged in a doughnut shape to form Toroidal Solenoids aka "Toroids"









- NOTE \_\_\_\_\_ is back, AND \_\_\_\_\_ NOT \_\_\_\_!
- B exists between \_\_\_\_\_ and \_\_\_\_, zero outside.
- R is "mean radius" = \_\_\_\_\_

<u>EXAMPLE</u>: A 300-turn toroidal solenoid has inner and outer radii 12 and 16 cm, respectively. If 5 A of current runs through the wire, what is the magnitude of the magnetic field produced:

- (a) at the center of the solenoid
- (b) at 14 cm away from the center
- (c) at 20 cm away from the center