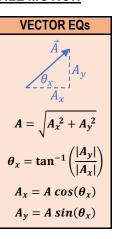
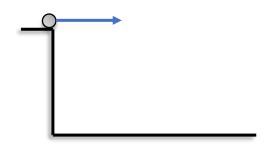

CONCEPT: INTRODUCTION TO PROJECTILE MOTION


- <u>Projectile Motion</u> occurs when an object is launched & moves in 2D under the influence of *only* ______.
 - Remember! Whenever we have Physics problems in 2D, we decompose them into 1D (X & Y).

• Projectile Motion **COMBINES** (1) horizontal motion where $a_x = \underline{\hspace{1cm}}$, and (2) vertical motion where $a_y = \underline{\hspace{1cm}}$.

EQUATIONS TO USE FOR PROJECTILE MOTION

UAM EQUATIONS		
$X (a_x = 0)$	$Y (a_y = -g)$	
$(1) v_x = v_{0x} + a_x t$	(1) $v_y = v_{0y} + a_y t$	
(2) $v_x^2 = v_{0x}^2 + 2a_x \Delta x$	(2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$	
(3) $\Delta x = v_{0x}t + \frac{1}{2}a_xt^2$	(3) $\Delta y = v_{0y}t + \frac{1}{2}a_yt^2$	
*(4) $\Delta x = \frac{1}{2}(v_{0x} + v_x)t$	*(4) $\Delta y = \frac{1}{2} (v_{0y} + v_y) t$	


PROBLEM: Which of the following quantities are constant during projectile motion?

- A) Vertical acceleration & vertical velocity
- B) Angle (direction) of the velocity vector
- C) Horizontal acceleration & vertical velocity
- D) Vertical acceleration & horizontal velocity

CONCEPT: SOLVING PROJECTILE MOTION PROBLEMS (WITH HORIZONTAL LAUNCH EXAMPLE)

<u>EXAMPLE</u>: A ball rolls horizontally off a 2m-tall table with a speed of 3.0 m/s. Calculate **a)** the time it takes for the ball to hit the ground, and **b)** the horizontal displacement (range) of the ball

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		VECTOR EQs
Χ	Υ	$\vec{A}_{lacksquare}$
$\Delta x = v_x t$	(1) $v_y = v_{0y} + a_y t$ (2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$ (3) $\Delta y = v_{0y} t + \frac{1}{2} a_y t^2$ *(4) $\Delta y = \frac{1}{2} (v_{0y} + v_f) t$	$A = \sqrt{A_x^2 + A_y^2}$ $\theta_x = \tan^{-1} \left(\frac{ A_y }{ A_x } \right)$
		$A_{x} = A \cos(\theta_{x})$
		$A_{v} = A \sin(\theta_{x})$

- ullet In projectile motion, time ${f t}$ can be found from either ${f \underline{X}}$ OR ${f \underline{Y}}$ axis equations. Always try the ${f \underline{\hspace{1cm}}}$ axis equation first.
 - If you get stuck and can't solve using X axis equation, always try to solve it with a Y axis equation, and vice versa.
- When an object is launched *horizontally*, its initial velocity is <u>ONLY</u> in the ___ axis: $v_{0x} = __ = __$
 - Remember: <u>all</u> objects in projectile motion <u>always</u> have (1) a_x = 0, so v_x ____ changes; and (2) a_y = -g

<u>PROBLEM</u>: A rock is thrown horizontally with a speed of 20 m/s from the edge of a high cliff. It lands 80 m from the cliff's base. How tall is the cliff?

- **A)** 78.4 m
- **B)** 19.6 m
- **C)** 122.5 m
- **D)** 24.5 m

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		
Χ	Υ	
$\Delta x = v_x t$	$\begin{aligned} &(1)v_y = v_{0y} + a_y t\\ &(2)v_y^{2} = v_{0y}^{2} + 2a_y \Delta y\\ &(3)\Delta y = v_{0y} t + \frac{1}{2}a_y t^2\\ &^* (4)\Delta y = \frac{1}{2} \big(v_{0y} + v_f\big) t \end{aligned}$	

VECTOR EQs	
$\frac{\vec{A}}{A_x} A_y$	
$A = \sqrt{A_x^2 + A_y^2}$	
$\theta_x = \tan^{-1}\left(\frac{ A_y }{ A_x }\right)$	
$A_x = A \cos(\theta_x)$	
$A = A \sin(\theta)$	

<u>PROBLEM</u>: A ping-pong player standing 1.6 m from the net serves the ball horizontally. The ball is hit 1.2 m above the floor. What initial speed does the ball need to go over the net, which is 1.6m away from the player and 0.90m above the floor?

- **A)** 2.1 m/s
- **B)** 3.2 m/s
- **C)** 9.2 m/s
- **D)** 6.4 m/s

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		
Х	Υ	
$\Delta x = v_x t$	$ \begin{aligned} &(1)v_y = v_{0y} + a_y t \\ &(2)v_y^{2} = v_{0y}^{2} + 2a_y \Delta y \\ &(3)\Delta y = v_{0y} t + \frac{1}{2}a_y t^2 \\ &^* (4)\Delta y = \frac{1}{2} \big(v_{0y} + v_f\big) t \end{aligned} $	

VECTOR EQs	
A_y A_y	
$A = \sqrt{{A_x}^2 + {A_y}^2}$	
$\theta_x = \tan^{-1}\left(\frac{ A_y }{ A_x }\right)$	
$A_x = A \cos(\theta_x)$	
$A_y = A \sin(\theta_x)$	

<u>PROBLEM</u>: You kick a ball horizontally at 8 m/s from the roof of a 40m-tall building. Unfortunately, a car below you on the street accelerates uniformly forwards from rest, and your ball lands on the car. What was the acceleration of the car?

- **A)** 7.92 m/s²
- **B)** 5.60 m/s²
- **C)** 1.96 m/s²
- **D)** 11.2 m/s²

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		VECTOR EQs
Χ	Υ	$\vec{A}_{ \blacksquare}$
$\Delta x = v_x t$	(1) $v_y = v_{0y} + a_y t$ (2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$ (3) $\Delta y = v_{0y} t + \frac{1}{2} a_y t^2$	$A = \sqrt{A_x^2 + A_y^2}$
	*(4) $\Delta y = \frac{1}{2} (v_{0y} + v_f) t$	$\theta_x = \tan^{-1}\left(\frac{ A_y }{ A_x }\right)$
		$A_x = A \cos(\theta_x)$
		$A_y = A \sin(\theta_x)$