CONCEPT: ELECTRIC POTENTIAL

• <u>ELECTRIC POTENTIAL</u>, also called simply <u>POTENTIAL</u>, is related to, but **different** from <u>Electric Potential ENERGY</u>.

FIELD → FORCE	POTENTIAL → ENERGY
- A single charge produces an Electric FIELD	- A single charge also produces an Electric POTENTIAL
- Field tells charges how much to feel	- Potential tells charges how much to have
- Once there's a second charge, there is $_$ \rightarrow $F=q~E$ - E is the strength of the $_$ field - q is the [PRODUCING FEELING] charge	- Once there's a second charge, there is → U = - V is the strength of the field - q is the [PRODUCING FEELING] charge
→ "Electric FIELD" E = FORCE Field	→ "Electric POTENTIAL" V = ENERGY Field

• The UNIT of Electric Potential is the _____ ($\mathbf{V} = {}^{1J}/_{1C}$)

- CAREFUL! **V** is the symbol for both Electric Potential AND its unit. Example: _____

<u>EXAMPLE</u>: A 5C and 3C charge are separated by some distance. If the 5C charge feels 200 V from the 3C charge, what is the potential energy of the 5C charge?

CONCEPT: MOVEMENT OF CHARGES IN POTENTIAL FIELDS

- [+ |] charges ALWAYS move to low potential, and [+ |] charges ALWAYS to high potential.
 - Potential is a field that provides "motivation" for charges to move → gives them potential energy

EXAMPLE: An electron is at rest between two points, A at 10 V, and B at 0 V. Which point will the electron move to?

EXAMPLE: A metal rod is placed in a uniform electric field as shown below. Which end of the rod is at a higher potential?

CONCEPT: POTENTIAL DUE TO A POINT CHARGE

- Remember: Electric POTENTIAL (POTENTIAL) is an ENERGY field → U = q V → V = ______
 - → So we think of POTENTIAL as Electric Potential **Energy** per ______.
- A POINT CHARGE produces a Potential:

- Units are VOLTS (1 V)

- - CAREFUL! Voltage _____ Volts
- This means that a charge **q** either *gains* or *loses* energy through a potential difference.

$$\rightarrow \Delta U =$$

<u>EXAMPLE</u>: a) What is the potential 0.5 m away from a 2μ C charge? b) What about 1 m away? c) What is the potential difference from P_1 to P_2 ? The voltage?

 \rightarrow Remember: Voltage is _____, not _____!

PRACTICE: ELECTRIC POTENTIAL DUE TO A POINT CHARGE

How far from a 5 μC charge will the potential be 100 V?

PRACTICE: POTENTIAL BETWEEN TWO POINT CHARGES

A -1 μ C and a 5 μ C charge lie on a line, separated by 5cm. What is the electric potential halfway between the two charges?

EXAMPLE: POTENTIAL DIFFERENCE BETWEEN TWO CHARGES

Two charges, *q* and -3*q*, lie on a line as shown below. What is the potential difference between point A and point B?

