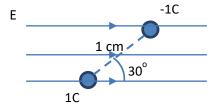

CONCEPT: INTRO TO DIPOLE MOMENTS

- Two equal charges **q** with opposite signs (+ and -) form an **electric dipole**.
 - Dipole moment is a **vector**
- \rightarrow

 $\vec{\mathbf{p}} = \mathbf{q} \, \vec{\mathbf{d}}$

- \vec{d} is a <u>vector</u> that points [FROM | TO] positive charge [FROM | TO] negative charge.


EXAMPLE: What is the vector dipole moment of the following dipole?

CONCEPT: ENERGY AND TORQUE OF DIPOLE MOMENTS

- A dipole in an electric field has potential energy \rightarrow $\mathbf{U} = -\vec{\mathbf{p}} \cdot \vec{\mathbf{E}} = -\mathbf{pEcos}\boldsymbol{\theta}$
- A dipole experiences a <u>torque</u> due to an electric field \rightarrow $\vec{\tau} = \vec{p} \times \vec{E} = pEsin\theta$

<u>EXAMPLE</u>: The dipole depicted in the figure below is in a uniform electric field of 200 N/C. What is the potential energy of the dipole? What is the magnitude of the torque the dipole experiences?

