CONCEPT: INTRO TO DOT PRODUCT (SCALAR PRODUCT) - Multiplying Vectors by Scalars is simple. You'll need to know 2 different ways to multiply Vectors by other Vectors: - 1) Dot Product (Scalar Product): _____ - 2) Cross Product (Vector Product): _____ (covered later) ## **Multiples of Vectors** Vector * Scalar (#) = Vector (number + direction) $$\left\{\begin{array}{c} 4 \\ \longrightarrow \end{array}\right\}$$ times $\left\{\begin{array}{c} 3 \\ \end{array}\right\} = \longrightarrow \longrightarrow$ ## **Dot Product** **Vector • Vector = Scalar (number only, no direction)** $$\left\{ \begin{array}{c} 4 \\ \end{array} \right\} \quad \bullet \quad \left\{ \begin{array}{c} 3 \\ \end{array} \right\} \quad = \quad$$ $\overrightarrow{A} \bullet \overrightarrow{B} =$ ______ - θ = smallest angle from \overrightarrow{A} to \overrightarrow{B} - Put calculator in <u>degrees</u> mode! - Dot Product = multiplication of _____ components. EXAMPLE: Calculate the Dot Product of \vec{A} and \vec{B} in each of the following: - Always line up vectors end-to-end (tail-to-tail) - Negative Dot Product = components in _____ directions. - ZERO Dot Product = components in _____ directions. <u>PRACTICE</u>: Using the vectors given in the figure, (a) find $\vec{A} \bullet \vec{B}$. (b) Find $\vec{A} \bullet \vec{C}$.