CONCEPT: INTRO TO DOT PRODUCT (SCALAR PRODUCT)

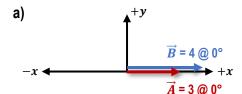
- Multiplying Vectors by Scalars is simple. You'll need to know 2 different ways to multiply Vectors by other Vectors:
 - 1) Dot Product (Scalar Product): _____
 - 2) Cross Product (Vector Product): _____ (covered later)

Multiples of Vectors

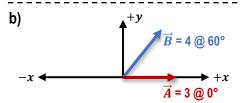
Vector * Scalar (#) = Vector (number + direction)

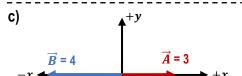
$$\left\{\begin{array}{c} 4 \\ \longrightarrow \end{array}\right\}$$
 times $\left\{\begin{array}{c} 3 \\ \end{array}\right\} = \longrightarrow \longrightarrow$

Dot Product

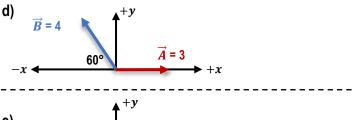

Vector • Vector = Scalar (number only, no direction)

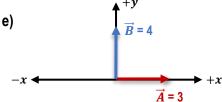
$$\left\{ \begin{array}{c} 4 \\ \end{array} \right\} \quad \bullet \quad \left\{ \begin{array}{c} 3 \\ \end{array} \right\} \quad = \quad$$

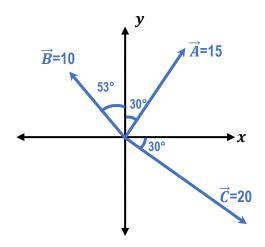

 $\overrightarrow{A} \bullet \overrightarrow{B} =$ ______ - θ = smallest angle from \overrightarrow{A} to \overrightarrow{B} - Put calculator in <u>degrees</u> mode!


- Dot Product = multiplication of _____ components.

EXAMPLE: Calculate the Dot Product of \vec{A} and \vec{B} in each of the following:




- Always line up vectors end-to-end (tail-to-tail)


- Negative Dot Product = components in _____ directions.

- ZERO Dot Product = components in _____ directions.

<u>PRACTICE</u>: Using the vectors given in the figure, (a) find $\vec{A} \bullet \vec{B}$. (b) Find $\vec{A} \bullet \vec{C}$.

