CONCEPT: MEAN FREE PATH

- Mean Free Path: Average (mean) distance gas particles travel before _____ with another particle.
 - Analogy: If you walked through a crowded room, the average distance you walk before bumping into someone.

- t_{ava} = average time between collisions
- r = radius of particles. If not given, assume r = 0.5×10⁻¹⁰ (monoatomic), r = 1×10⁻¹⁰ m (diatomic)

<u>EXAMPLE</u>: Calculate **a)** the mean free path of oxygen molecules in the air at STP; **b)** the average time between molecule collisions. The radius of oxygen molecules is approximately 1.5×10⁻¹⁰ m, and they move with an average speed 450 m/s.

THERMO EQs & CONSTANTS

$$PV = nRT \ \underline{OR} \ PV = Nk_BT$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{\kappa}$$

$$R = 8.314 \frac{J}{mol \cdot K}$$

<u>PROBLEM</u>: Laboratory environments can achieve pressures of 3.5×10⁻¹³ atm and temperatures of 300K. Calculate the mean free path (in km) of air molecules, which you can assume are diatomic.

- **A)** 1.04×10⁻³² km
- **B)** 6.65 km
- **C)** 660 km
- **D)** 8.22×10⁻¹⁰ km

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_BT$$

$$\lambda = v_{avg}t_{avg} = \frac{v}{\sqrt{2} \cdot 4\pi r^2 N}$$

$$r_{monoatomic}$$
 = 0.5×10⁻¹⁰ m

 $r_{diatomic}$ = 1.0×10⁻¹⁰ m

$$R = 8.314 \frac{J}{mol\ K}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$

$$N_A = 6.02 \times 10^{23}$$

CONVERSIONS

 $1L = 0.001 \text{ m}^3$

1 atm = 1.01×10⁵ Pa

PROBLEM: The mean free path of nitrogen particles at STP is 8×10-8 m. What is the radius of the nitrogen particles?

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_BT$$

$$\lambda = v_{avg}t_{avg} = \frac{v}{\sqrt{2} \cdot 4\pi r^2 N}$$

$$R = 8.314 \frac{J}{mol\ K}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$

$$N_A = 6.02 \times 10^{23}$$