CONCEPT: IMPEDANCE IN AC CIRCUITS • We know how to find the current in any AC circuit with ONE element → It's just the maximum voltage divided by the _____ - There are two types of circuits: series circuits and parallel circuits. - Whenever an AC circuit has multiple elements in series, the ______ phasors line up - Whenever an AC circuit has multiple elements in parallel, the ______ phasors line up - Consider an AC source connected in series to a resistor and a capacitor. - In this case, the maximum voltage across the resistor and capacitor, V_{RC} , will NOT be equal to $V_R + V_C$ - These maximum voltages, V_R and V_C , occur at different times - Instead, the maximum voltage V_{RC} will be the ______ of the voltage phasors - \rightarrow This leads us to $V_{RC} = I_{MAX} \sqrt{R^2 + X_C^2} = I_{MAX} Z$ - The IMPEDENCE in an AC circuit, Z, acts as the effective reactance in a circuit with multiple elements → The MAXIMUM CURRENT output by the source is ALWAYS $I_{MAX} = \underline{\hspace{1cm}}$ EXAMPLE: What's the impedance of an AC circuit with a resistor and inductor in series? ## What's the impedance of a parallel LR AC circuit? PRACTICE: IMPEDANCE OF A PARALLEL RC AC CIRCUIT What's the impedance of a parallel RC AC circuit? **EXAMPLE: IMPEDANCE OF A PARALLEL LR AC CIRCUIT** ## PRACTICE: CURRENT IN A PARALLEL RC CIRCUIT An AC source operates at a maximum voltage of 120 V and an angular frequency of 377 s⁻¹. If this source is connected in parallel to a 15 Ω resistor and in parallel to a 0.20 mF capacitor, answer the following questions: - a) What is the maximum current produced by the source? - b) What is the maximum current through the resistor? - c) What is the maximum current through the capacitor?