CONCEPT: LRC CIRCUITS

• As the name implies, an LRC circuit contains ______, _____, and ______

• In and LRC circuit, with the capacitor initially charged, we have:

$$-\Sigma V = \underline{\hspace{1cm}} = 0$$

• There are 3 solutions to the equation above: the UNDERDAMPED, CRITICALLY DAMPED, and OVERDRAMPED

UNDERDAMPED	CRITICALLY DAMPED	OVERDAMPED
$-q(t) = Qe^{-(R/2L)t}\cos(\omega't + \phi)$	$-q(t) = Qe^{-(R/2L)t}$	- No simple equation
q	q	q t
- Occurs for small R - Looks almost like an LC circuit	- Occurs when $R^2 = 4L/C$ - Looks like an RC Circuit	- Occurs for large R - Looks like an RC Circuit
- But R is sapping energy		

• The new angular frequency is

$$-\omega' = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

EXAMPLE: AMPLITUDE DECAY IN AN LRC CIRCUIT

An LRC circuit has an inductance of 10 mH, a capacitance of 100 μ F, and a resistance of 20 Ω . What type of LRC circuit is this? How long will it take for the maximum charge stored on the capacitor to drop by half?