CONCEPT: LRC CIRCUITS • As the name implies, an LRC circuit contains ______, _____, and ______ • In and LRC circuit, with the capacitor initially charged, we have: $$-\Sigma V = \underline{\hspace{1cm}} = 0$$ • There are 3 solutions to the equation above: the UNDERDAMPED, CRITICALLY DAMPED, and OVERDRAMPED | UNDERDAMPED | CRITICALLY DAMPED | OVERDAMPED | |---|--|--| | $-q(t) = Qe^{-(R/2L)t}\cos(\omega't + \phi)$ | $-q(t) = Qe^{-(R/2L)t}$ | - No simple equation | | q | q | q t | | - Occurs for small R - Looks almost like an LC circuit | - Occurs when $R^2 = 4L/C$
- Looks like an RC Circuit | - Occurs for large R - Looks like an RC Circuit | | - But R is sapping energy | | | • The new angular frequency is $$-\omega' = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$ ## **EXAMPLE: AMPLITUDE DECAY IN AN LRC CIRCUIT** An LRC circuit has an inductance of 10 mH, a capacitance of 100 μ F, and a resistance of 20 Ω . What type of LRC circuit is this? How long will it take for the maximum charge stored on the capacitor to drop by half?