CONCEPT: SOLVING PROJECTILE MOTION WITH ENERGY CONSERVATION

$$K_i + U_i + W_{NC} = K_f + U_f$$

• Projectile Motion problems asking for height / speed CAN sometimes* be solved easier by using Energy Conservation.

<u>EXAMPLE</u>: You throw a ball from the top of a 30m building with an initial speed of 20m/s at an unknown launch angle. Ignore air resistance. Use **Energy Conservation** to calculate the ball's speed before hitting the ground.

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve

<u>PROBLEM</u>: You are practicing jumping as far as you can. In one attempt, you run and leave the floor with 7 m/s directed at an unknown angle. What maximum height do you reach if your speed at that point is 5 m/s? Ignore air resistance.

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ3) Eliminate & expand terms
- 4) Solve