CONCEPT: VECTOR PRODUCT (CROSS PRODUCT) AND THE RIGHT-HAND-RULE

• The Vector (Cross) Product is the 2nd way of multiplying vectors: 1) Scalar Product; 2) Vector Product

- Produces a [NUMBER | VECTOR]
 - Multiplication of \vec{A} parallel to \vec{B}

• Produces a [NUMBER | VECTOR] \vec{c} ______ to both \vec{A} and \vec{B}

Magnitude: $|\vec{C}| = |\vec{A} \times \vec{B}| =$

 θ = smallest angle measured $\underline{from} \ \overrightarrow{A} \ \underline{to} \ \overrightarrow{B}$

- - Always point fingers along 1st vector (\overrightarrow{A}), curl ______2nd vector (\overrightarrow{B}). Thumb points in direction of \overrightarrow{C} .
 - The symbol ___ = "out of the page" toward you, while ___ = "into the page" away from you

EXAMPLE: Calculate the magnitude and direction of $\vec{A} \times \vec{B}$.

 $\underline{\text{Top-Down (2D)}}$ $\overrightarrow{A}=2$ $\overrightarrow{B}=4$

• The cross product $\vec{A} \times \vec{B}$ is ZERO if the vectors are _____ (θ = __ OR ____)

PROBLEM: Find the magnitude and direction of the vector $\vec{c} = 2\vec{B} \times \vec{A}$.

- A) $|\vec{C}| = 27$; along the –x direction
- **B)** $|\vec{C}| = 27$; along the +x direction
- C) $|\vec{C}| = 54$; along the +x direction
- **D)** $|\vec{C}| = 54$; along the +y direction
- E) $|\vec{C}| = 19$; along the +x direction

<u>PROBLEM:</u> Find the magnitude and direction of the vector $\vec{c} = \vec{A} \times \vec{B}$. Write the direction of \vec{c} as a positive angle from the x-axis.

<u>PROBLEM:</u> Two vectors \vec{A} and \vec{B} have scalar product -8, and their vector product has magnitude +12. What is the angle between these two vectors?