CONCEPT: VECTOR PRODUCT (CROSS PRODUCT) AND THE RIGHT-HAND-RULE • The Vector (Cross) Product is the 2nd way of multiplying vectors: 1) Scalar Product; 2) Vector Product - Produces a [NUMBER | VECTOR] - Multiplication of \vec{A} parallel to \vec{B} • Produces a [NUMBER | VECTOR] \vec{c} ______ to both \vec{A} and \vec{B} Magnitude: $|\vec{C}| = |\vec{A} \times \vec{B}| =$ θ = smallest angle measured $\underline{from} \ \overrightarrow{A} \ \underline{to} \ \overrightarrow{B}$ - - Always point fingers along 1st vector (\overrightarrow{A}), curl ______2nd vector (\overrightarrow{B}). Thumb points in direction of \overrightarrow{C} . - The symbol ___ = "out of the page" toward you, while ___ = "into the page" away from you EXAMPLE: Calculate the magnitude and direction of $\vec{A} \times \vec{B}$. $\underline{\text{Top-Down (2D)}}$ $\overrightarrow{A}=2$ $\overrightarrow{B}=4$ • The cross product $\vec{A} \times \vec{B}$ is ZERO if the vectors are _____ (θ = __ OR ____) PROBLEM: Find the magnitude and direction of the vector $\vec{c} = 2\vec{B} \times \vec{A}$. - A) $|\vec{C}| = 27$; along the –x direction - **B)** $|\vec{C}| = 27$; along the +x direction - C) $|\vec{C}| = 54$; along the +x direction - **D)** $|\vec{C}| = 54$; along the +y direction - E) $|\vec{C}| = 19$; along the +x direction <u>PROBLEM:</u> Find the magnitude and direction of the vector $\vec{c} = \vec{A} \times \vec{B}$. Write the direction of \vec{c} as a positive angle from the x-axis. <u>PROBLEM:</u> Two vectors \vec{A} and \vec{B} have scalar product -8, and their vector product has magnitude +12. What is the angle between these two vectors?