CONCEPT: FLAT CURVE

• When objects travel around horizontal (flat) curves, the force that keeps them in circular motion is ______.

<u>EXAMPLE</u>: Find the maximum speed that an 800kg car can have while driving around flat curve of radius 50m *without slipping* if the coefficient of static friction between the car and the road is 0.5.

CENTRIPETAL FORCES

- 1) Draw FBD
- 2) Write $\Sigma F_c = ma_c$ (rewrite $a_C \Rightarrow v^2/R$)
- 3) Solve

Circ. Motion / Centripetal Forces

$$a_C = \frac{v_T^2}{R} = \frac{4\pi^2 R}{T^2} = 4\pi^2 R f^2$$

$$T = \frac{1}{f} \Leftrightarrow f = \frac{1}{T}$$

$$v_T = \frac{C}{T} = \frac{2\pi R}{T} = 2\pi R f$$

<u>PROBLEM</u>: A truck can go around a flat curve of radius 150m with a maximum speed of 32m/s before slipping. Calculate the maximum speed it can go around a tighter curve of radius 75m.

- **A)** 32 m/s
- **B)** 515 m/s
- **C)** 3.8 m/s
- **D)** 22.7 m/s

CENTRIPETAL FORCES

- 1) Draw FBD
- 2) Write $\Sigma F_c = ma_c$ (rewrite $a_C \Rightarrow v^2/R$)
- 3) Solve

Circ. Motion / Centripetal Forces

$$a_C = \frac{v_T^2}{R} = \frac{4\pi^2 R}{T^2} = 4\pi^2 R f^2$$

$$T = \frac{1}{f} \Leftrightarrow f = \frac{1}{T}$$

$$v_T = \frac{C}{T} = \frac{2\pi R}{T} = 2\pi R f$$
Flat Curve: $v^2 = gR\mu_s$