CONCEPT: SPEED DISTRIBUTION OF IDEAL GASES

- Gas particles do <u>not</u> all travel at the same speed. As they collide, particles speed up and slow down randomly.
 - If you plotted the # of particles vs. the speeds, you get a _____ (a.k.a Maxwell-Boltzmann Distribution)

<u>EXAMPLE</u>: The speed distributions for an ideal gas at different temperatures is shown below. The ideal gas particles have a molar mass of 28 g/mol. a) Calculate the most probable, average, and RMS speeds of gas particles in a sample at 300K. b) If you picked a particle from the 600K gas sample at random, what is the speed you'd most likely measure?

• There are 3 special speeds you need to know:

Most Probable (Likely) Speed

$$v_{MP} = \sqrt{---} = \sqrt{---}$$

• Highest probability = _____ of the curve

Average Speed

$$v_{avg} = \sqrt{---} = \sqrt{---}$$

True average

RMS Speed

$$v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

• Type of average skewed to higher v

- ullet For any given temperature, $v_{\mathit{MP}} \ _\ v_{\mathit{avg}} \ _\ v_{rms}$
 - In general, all 3 speeds increase as T increases, and the curve gets flatter.

<u>PROBLEM</u>: The escape velocity from the Earth is approximately 11.2 km/s. If the mass of helium atoms is 6.64×10^{-27} kg, at what temperature would the average speed of helium atoms be equal to the escape velocity?

- **A)** 2361 K
- **B)** 2.11 K
- C) 4.5×10⁻⁴² K
- **D)** 3.9×10⁻²⁰ K

IDEAL GAS EQs & Constants $PV = nRT = Nk_BT$ $v_{MP} = \sqrt{\frac{2k_BT}{m}} = \sqrt{\frac{2RT}{M}}$ $v_{avg} = \sqrt{\frac{8k_BT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$ $v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$ $R = 8.314 \frac{J}{mol\ K}$ $k_B = 1.38 \times 10^{-23} \frac{J}{K}$ $N_A = 6.02 \times 10^{23}$

<u>PROBLEM</u>: The graph below plots the probability distribution for oxygen, which has a molar mass of 32 g/mol. The farthest tick on the x-axis is set to 1200 m/s. What is the temperature of this sample of oxygen gas?

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_BT$$

$$v_{MP} = \sqrt{\frac{2k_BT}{m}} = \sqrt{\frac{2RT}{M}}$$

$$v_{avg} = \sqrt{\frac{8k_BT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$$

$$v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

$$R = 8.314 \frac{J}{mol\ K}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$

$$N_A = 6.02 \times 10^{23}$$