CONCEPT: LR CIRCUITS

- LR (or RL) Circuits are circuits containing _____ and ____
- Depending on the switch positions, there are two processes happening in this circuit:
 - CURRENT GROWTH: S2 open and S1 closed, current [INCREASES | DECREASES]
 - CURRENT DECAY: S₁ open and S₂ closed, current [INCREASES | DECREASES]

• CURRENT GROWTH: Current starts from [ZERO | MAX]; inductor resists growing current, eventually reaches ____

$$i(t) = \frac{V}{R} \left(1 - e^{-t/\tau} \right)$$

• CURRENT DECAY: Current starts from [ZERO | MAX]; inductor resists decreasing current, eventually reaches _____

$$i(t) = \frac{V}{R}e^{-t/\tau}$$

- ullet The TIME CONSTANT, $oldsymbol{ au}=rac{L}{R}$, determines the how quickly growth and decay occurs
 - Lower time constants \rightarrow [FASTER | SLOWER] changes in current
 - Higher time constants \rightarrow [FASTER | SLOWER] changes in current

EXAMPLE: UNKOWN RESISTANCE IN LR CIRCUIT

An LR circuit has a time constant of 0.025 s and is initially connected to a 10 V battery. If after 0.005 s of being disconnected from the battery, the current is 0.5 A, what is the resistance of the circuit?

PRACTICE: UNKNOWN CURRENT IN AN LR CIRCUIT

Consider the LR circuit shown below. Initially, both switches are open. Switch 1 is closed. **a)** What is the maximum current in the circuit after a long time? Then, S_1 is opened and S_2 is closed. **b)** What is the current in the circuit after 0.05s?

PRACTICE: TIME TO HALF MAXIMUM CURRENT

An LR circuit with L = 0.1 H and R = 10 Ω are connected to a battery with the circuit initially broken. When the circuit is closed, how much time passes until the current reaches half of its maximum value?