
CONCEPT: LINEAR THERMAL EXPANSION

- Thermal Expansion: If you increase the temperature of most materials, their _____ also increases (i.e. they expand).
 - For roughly 1D objects (like a rod), changing temperature (ΔT) also changes the _____ (ΔL) of the rod.

 α = coefficient of linear expansion [<u>Units</u>: $\frac{1}{K}$ or $\frac{1}{{}^{\circ}C}$] L₀ = initial length of object

- Sometimes you'll have to calculate the final length Lf.
 - We can use $\Delta L = L_f L_0$ to write an EQ for L_f :

<u>EXAMPLE</u>: An aluminum metal rod has an initial length of exactly 50.000m at an initial temperature of 20°C. If the coefficient of linear expansion for aluminum is 2.4×10⁻⁵, **a)** by how much does the length of the rod increase if you heat it up to 35°C? **b)** What would the final length of the rod be if you continued heating it up to 50°C?

• ΔT is the **same** in K and °C, so we can use either ΔT_K or ΔT_C in these equations.

<u>PROBLEM</u>: On a very cold day at a temperature of –12°C, a power line made of aluminum between two support towers measures exactly 150.56m. You go out on a hot day and measure the power line to be exactly 150.71m. What is the temperature (in °C) outside? The linear expansion coefficient of aluminum is 2.4×10⁻⁵.

- **A)** 29.5 °C
- **B)** -11.8°C
- **C)** 41.7 °C

LINEAR THERMAL EXPANSION

 $\Delta L = \alpha L_0 \Delta T$ $L_f = L_0 (1 + \alpha \Delta T)$

<u>PROBLEM</u>: Steel measuring tape is usually calibrated for measurement accuracy at 20°C. If the measuring tape is exactly 50m long at this temperature, what is the length of the tape at 40°C? The linear expansion coefficient of steel is 1.2×10⁻⁵.

LINEAR THERMAL EXPANSION

 $\Delta L = \alpha L_0 \Delta T$ $L_f = L_0 (1 + \alpha \Delta T)$