CONCEPT: AMPERE'S LAW WITH CALCULUS

• ANY magnetic field, \vec{B} , must satisfy the following equation:

$$\phi_S \vec{B} \cdot d\vec{l} = \underline{\hspace{1cm}}$$
- Known as Ampere's Law

- Like for Gauss' law, the magnetic field depends ONLY on the current enclosed by an "Amperian loop".

EXAMPLE: Using Ampere's law, find the magnetic field due to an infinitely long, current-carrying wire.

EXAMPLE: MAGNETIC FIELD DUE TO A SOLENOID

What is the magnetic field along the axis of a solenoid?

PRACTICE: MAGNETIC FIELD DUE TO SOLID, CYLINDRICAL CURRENT-CARRYING CONDUCTOR

A solid, cylindrical conductor carries a uniform current density, J. If the radius of the cylindrical conductor is R, what is the magnetic field at a distance r from the center of the conductor when r < R? What about when r > R?

