CONCEPT: INCLINED PLANES OR RAMPS

- When objects are on Inclined Planes, we "tilt" the X-Y plane to line up the new X-axis ______ to the incline's slope.
 - After "tilting", ____ MUST be decomposed.
 - Components of **mg** are _____ from the usual component EQs for Forces: **mg**_x goes with [SIN | COS] mg_y goes with [SIN | COS]

$$F_x = F\cos(\theta_x)$$

 $F_y = F\sin(\theta_x)$

<u>EXAMPLE</u>: You release a 5kg block on a frictionless incline which is angled at 37° above the horizontal. (a) Draw the FBD. (b) Calculate the block's acceleration down the incline. (c) Write an expression for the Normal force.

INCLINED PLANES

- 1) Draw FBD
- 2) Tilt X & Y axes
- 3) Write $\Sigma F = ma$
- 4) Solve

- Acceleration on inclined planes <u>always</u> happens <u>only</u> on the ___ axis, since $a_y =$ ___ ($\Sigma F_y =$ ___)
 - If no other forces act on an object on an inclined plane, its acceleration depends only on **8**:

[No other Forces]

<u>PROBLEM</u>: A 4.0-kg box sits on a frictionless inclined plane that makes a 21° angle with the horizontal. It is held in place by a cord parallel to the plane. Calculate the tension in the cord.

- **A)** 14 N
- **B)** 37 N
- **C)** 33 N
- **D)** 21 N

INCLINED PLANES

- 1) Draw FBD
- 2) Tilt X & Y axes
- 3) Write $\Sigma F = ma$
- 4) Solve

<u>PROBLEM</u>: Mountain highways sometimes have "runaway ramps" for large trucks whose brakes fail. If a truck is moving at 18 m/s, and the escape ramp has a 20% uphill grade, how long should the ramp be to bring the truck to a stop?

- **A)** 338 m
- **B)** 169 m
- **C)** 84 m
- **D)** 17 m

INCLINED PLANES

- 1) Draw FBD
- 2) Tilt X & Y axes
- 3) Write $\Sigma F = ma$
- 4) Solve

• When incline angles are given as %, always convert it to a decimal and then to degrees:

 $\theta_{x}(^{\circ}) = \underline{\hspace{1cm}}$

<u>PROBLEM</u>: In the figure, block A hangs from a cord that passes over a pulley and connects it to block B, sitting on a frictionless ramp. $m_A=2$ kg, $m_B=5$ kg, and $\theta=53^\circ$. What is the magnitude of the blocks' acceleration?

- **A)** 4.8 m/s²
- **B)** 2.8 m/s²
- **C)** 6.5 m/s^2
- **D)** 8.4 m/s²

CONNECTED SYSTEMS ON INC. PLANES

- 1) Draw FBD (tilt x&y axes on inclines)
- 2) Choose direction of +
- 3) Write $\Sigma F = ma$, start with simplest obj.
- 4) Solve α (EQ addition / substitution)
- **5)** Plug a into EQs, solve other targets