
## CONCEPT: EQUILIBRIUM TEMPERATURE IN CALORIMETRY PROBLEMS WITH PHASE CHANGES

- In some calorimetry problems with temperature & phase changes, you'll have to calculate the equilibrium temperature.
  - In these problems, you'll have to figure out # of  $mc\Delta T OR mL$  terms in the  $Q_A = -Q_B$ .

<u>EXAMPLE</u>: A 2kg pot made of copper is initially at 150°C. You pour 0.1kg of 30°C water into the pot, then close the lid to prevent steam from escaping. **a)** Calculate the final temperature of the pot & water. **b)** Calculate how much (if any) water turned into steam.



## **SPECIFIC & LATENT HEATS**

 $Q = mc\Delta T$  Q = mL  $c_{water} = 4186 \text{ J/(kg-K)}$ 

 $c_{copper}$  = 390 J/(kg·K)  $L_{v,water}$  = 2.256×10 $^{6}$  J/kg (liqightarrowgas)

 $T_f = \frac{m_1 c_1 T_{1i} + m_2 c_2 T_{2i} + \cdots}{m_1 c_1 + m_2 c_2 + \cdots}$