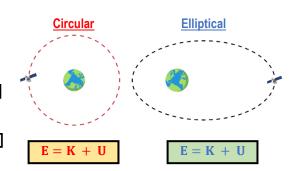
CONCEPT: Speeds & Energies in Elliptical Orbits

- Unlike for circular orbits, Kinetic & Potential energies are ______.
 - Closest distance (PERI...), speed is [MAX | MIN] \rightarrow K is [MAX | MIN]
 - Because Eell is conserved, when K is MAX, U is [MAX | MIN]
 - Farthest distance (APO...), speed is [MAX | MIN] → K is [MAX | MIN]
 - Because Eell is conserved, when K is MIN, U is [MAX | MIN]



• To compare the speeds at two different points/distances in a fixed elliptical orbit:

- Comes from Conservation of _____ ightarrow L=

$$\mathbf{m}\mathbf{v}_1\mathbf{r}_1 = \mathbf{m}\mathbf{v}_2\mathbf{r}_2$$

<u>EXAMPLE</u>: A planet is observed orbiting a distant star. At its closest distance of 0.31 AU, its velocity is 59.0 km/s. What is its velocity at its farthest distance of 0.47AU from the star?

EQUATIONS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$
$R_a = a(1+e)$	1AU = 1.5×10 ¹¹ m
$R_p = a(1 - e)$	M _E = 5.97×10 ²⁴ kg
$T_{sat}^2 = \frac{4\pi^2 a^3}{GM}$	R _E = 6.37×10 ⁶ m
$U_{G} = -\frac{GMm}{r}$	M _{Sun} = 2×10 ³⁰ kg R _{Sun} = 6.96×10 ⁸ m
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	
$E_{circ} = -\frac{GMm}{2r} = -\frac{1}{2}mv^2$	
$E_{ell} = -\frac{GMm}{2a} \ v_a R_a = v_P R_p$	

- When plugging in for ${\bf v}$ and ${\bf r}$, they can be non-SI if consistent (same units for ${\bf v_1}$ & ${\bf v_2}$, ${\bf r_1}$ & ${\bf r_2}$)

<u>PRACTICE</u>: Pluto travels in a fairly elliptical orbit around the Sun. At its closest distance of 4.43×10⁹ km, its orbital speed is 6.12 km/s. At its farthest, its orbital speed reduces to just 3.71 km/s. How far is it from the Sun at this point (in km)?

EQUATIONS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}$
$R_a = a(1+e)$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$R_p = a(1 - e)$	R _E = 6.37×10 ⁶ m
$T_{\text{sat}}^2 = \frac{4\pi^2 a^3}{\text{GM}}$	M _{Sun} = 2×10 ³⁰ kg
$U_{G} = -\frac{GMm}{r}$	R _{Sun} = 6.96×10 ⁸ m
$K_i + U_i + W_{NC} = K_f + U_f$	
$E_{circ} = -\frac{GMm}{2r} = -\frac{1}{2}mv^2$	
$\mathbf{E_{ell}} = -\frac{\mathbf{GMm}}{2\mathbf{a}}$	
$\mathbf{v_1}\mathbf{r_1} = \mathbf{v_2}\mathbf{r_2}$	

EXAMPLE: A comet travels around the Sun once every 2,000 years. At its closest approach, it is 3×108 km from the Sun. a) What is its farthest distance? b) What is the ratio of the comet's speed at the closest point to its farthest point?

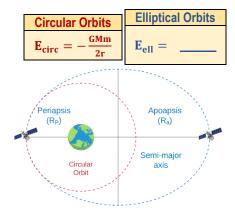
EQUATIONS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}$
$R_a = a(1+e)$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$R_p = a(1 - e)$	R _E = 6.37×10 ⁶ m
$T_{\text{sat}}^2 = \frac{4\pi^2 a^3}{\text{GM}}$	M _{Sun} = 2×10 ³⁰ kg
$U_{G} = -\frac{GMm}{r}$	R _{Sun} = 6.96×10 ⁸ m
$K_i + U_i + W_{NC} = K_f + U_f$	
$E_{circ} = -\frac{GMm}{2r} = -\frac{1}{2}mv^2$	
$\mathbf{E_{ell}} = -\frac{\mathbf{GMm}}{2\mathbf{a}}$	
$\mathbf{v_1}\mathbf{r_1} = \mathbf{v_2}\mathbf{r_2}$	

CONCEPT: Energy Conservation in Changing Elliptical Orbits

- To go from a circular orbit ↔ *elliptical* orbit, some work must be done.
 - Changing orbits, so we still use **Energy Conservation**:

$$K_i + U_i + W_{NC} = K_f + U_f \qquad -$$

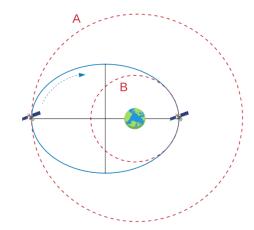
ullet Elliptical orbit energy equation is *very* similar to circular orbit, replace ${f r}
ightarrow \underline{\hspace{1cm}}$.



<u>EXAMPLE</u>: A spacecraft with mass 1×10^4 kg is in a 6.87×10^6 m circular orbit around the Earth. How much energy is required in order to reach an elliptical orbit with an apogee of 2.0×10^7 m?

EQUATIONS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg·s}^2}$
$R_a = a(1+e)$	1AU = 1.5×10 ¹¹ m
$R_p = a(1-e)$	M _E = 5.97×10 ²⁴ kg
$T_{\text{sat}}^2 = \frac{4\pi^2 a^3}{GM}$	R _E = 6.37×10 ⁶ m M _{Sun} = 2×10 ³⁰ kg
$U_{G} = -\frac{GMm}{r}$	R _{Sun} = 6.96×10 ⁸ m
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	
$\mathbf{E}_{\mathrm{circ}} = -\frac{\mathrm{GMm}}{2\mathrm{r}} = -\frac{1}{2}\mathbf{m}\mathbf{v}^2$	
$E_{ell} = -\frac{GMm}{2a}$	

- \bullet When changing from circular \rightarrow elliptical orbits, **r** becomes ______, depending on the <u>size</u> of the new orbit.
 - If new orbit is larger, r = _____
 - If new orbit is **smaller**, r = _____
 - From elliptical \rightarrow circular:
 - **(A)** If new orbit is **larger**, ____ = r
 - (B) If new orbit is smaller, ____ = r



PRACTICE: A comet is in a highly elliptical orbit around the Sun with a period of 2400 years. If this comet has a mass of approximately 5×10¹⁴ kg, what is the total energy of its orbit?

EQUATIONS	CONSTANTS
$T_{sat}^2 = \frac{4\pi^2 a^3}{GM}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}$
$U_{G} = -\frac{GMm}{r}$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	R _E = 6.37×10 ⁶ m
$E_{circ} = -\frac{GMm}{2r}$	M _{Sun} = 2×10 ³⁰ kg R _{Sun} = 6.96×10 ⁸ m
$E_{\rm ell} = -\frac{GMm}{2a}$	

EXAMPLE: a) How much energy would be required for a 2,000-kg spacecraft to change from an orbit with a perigee of 6.87×106 m and apogee of 8.87×106 m to a circular orbit of 8.87×106 m? b) Assuming it fires its thrusters at apogee, by how

much would it have to change its velocity to achieve this new orbit?

EQUATIONS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$
$R_a = a(1 + e)$	M _E = 5.97×10 ²⁴ kg
$R_p = a(1 - e)$	R _E = 6.37×10 ⁶ m
$T_{\text{sat}}^2 = \frac{4\pi^2 a^3}{\text{GM}}$	M _{Sun} = 2×10 ³⁰ kg
$U_G = -\frac{GMm}{r}$	R _{Sun} = 6.96×10 ⁸ m
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	
$E_{circ} = -\frac{GMm}{2r}$	
$E_{ell} = -\frac{GMm}{2a}$	