CENTER OF MASS AND SIMPLE BALANCE

Remember: An object's weight ALWAYS acts on its		().
- Also: If an object has	mass distribution, its	is on its geometric
- An object "sticking out" of a supporting	surface will TILT if its	is located beyond the support's edge.
- These are Static Equilibrium problems,	BUT are solved using	, which is much simpler:
	→ x_	==

EXAMPLE: HOW FAR CAN YOU GO ON A PLANK?

<u>EXAMPLE</u>: A 20 kg, 10 m-long plank is supported by two small blocks, one located at its left edge and the other 3 m from its right edge. A 60 kg person walks on the plank. What is the farthest this person can get, to the right of the rightmost support, before the plank tips?

NON-UNIFORM MASS DISTRIBUTIONS

 Unless otherwise stated, assume a Rigid Body has <u>UNIFORM mass distribution</u>, so its weight ad 	ets on its
- If it does NOT have uniform mass distribution, you CANNOT assume the location of its _	

- In these problems, you will be given the center of mass and asked to calculate something else (or vice-versa).

<u>EXAMPLE</u>: An 80 kg, 2 m-tall man lies horizontally on a 2 m-long board of negligible mass. Human bodies generally **do not** have uniform mass distribution. Two scales are placed under the board, at its ends. If the left and right scales read 320 N and 480 N, respectively, how far from the man's head is his center of mass? Use $g = 10 \text{ m/s}^2$ to simplify your calculations.

PRACTICE: FORCES ON A PUSH-UP

<u>PRACTICE</u>: A 70 kg, 1.90 m man doing push-ups holds himself in place making 20° with the floor. His feet and arms are, respectively, 1.15 m below and 0.4 m above his center of mass. You may model him as a thin, long board and assume his arms and feet are perpendicular to the floor. How much force does the floor apply to <u>each</u> of his hands? Assume $g=10m/s^2$.

