TYPES OF ACCELERATION IN ROTATION

- There are FOUR types of acceleration in rotation problems
- Centripetal / Radial (linear)
 Tangential (linear)
 Total / Acceleration (linear)
 Rotational / Angular
- BUT some exist only if you're accelerating (spinning faster):
- You always have **v**_T, **a**_C (aka **a**_{RAD}), and **w**:
- IF accelerating: you also have \mathbf{a}_T and α :

- a,_C ______
- **a**,τ (and α) _____.
- The equation $\mathbf{a}_{,T} = \mathbf{r} \alpha$ is a way to remember that $\mathbf{a}_{,T}$ and α are connected. If one is zero, the other has to be zero.
 - Note that IF a,T = 0, then a = _____ = a,c.

EXAMPLE 1: A carousel 10 m in radius completes one cycle every 45 s. A boy stands at the edge of the carousel. Find his:

- (a) Tangential velocity
- (b) Angular acceleration
- (c) Radial acceleration
- (d) Tangential acceleration
- (e) Total linear acceleration

<u>EXAMPLE 2</u>: A carousel 16 m in radius accelerates from rest with 0.05 rad/s². A boy stands at the edge of the carousel. After the carousel has accelerated for 10 s, calculate the boy's:

- (a) Tangential velocity
- (b) Tangential acceleration
- (c) Radial acceleration
- (d) Angular acceleration
- (e) Total linear acceleration

PRACTICE: ROTATIONAL KINEMATICS

<u>PRACTICE</u>: A large disc of radius 10 m initially at rest takes 200 full revolutions to reach 30 RPM. Calculate the total linear acceleration of a point at half way between the disc's center and its edge, once the disc reaches 30 RPM. (You may assume it continues accelerating past that point)

PRACTICE: ROTATIONAL KINEMATICS

PRACTICE: An object of negligible size moves in a circular path of radius 20 m with 90 RPM. Find its radial acceleration.