CONCEPT: Gravitational Forces in 2D

- To solve for net forces in non-linear arrangements, we <u>must</u> use _____.
 - Remember that gravity is a force/vector, so we can break it up into its ______

EXAMPLE: Calculate the magnitude and direction of the net gravitational force on m_1 in the figure. Assume point masses.

CONCEPT: Using Symmetry in 2D Gravitation

• When given equal masses & distances, use symmetry to cancel out vector components.

- Same **m's**, **r's** → same _____
- Same F_G , $\Theta \to \text{same}$ _____ $\to \text{cancel if opposite!}$

EXAMPLE: In the figure below, what is the net gravitational force on mass m if it feels a 5N force from each M on the right?

CONCEPT: Finding Net Forces in 2D Gravitation

• To solve 2D Gravitation problems, combine Newton's Law of Gravity (F_G), vector addition, and symmetry.

<u>EXAMPLE</u>: Three 50-kg masses are arranged in an equilateral triangle with side length 0.6m. Find the magnitude and direction of the net gravitational force on the bottom mass. (Equilateral triangles have 60° angles between their sides.)

STEPS FOR 2D GRAV.

- 1) Label Forces
- 2) Calculate Forces
- 3) Decompose & Symmetry
- 4) Add Components $\rightarrow F_{net}$

<u>PRACTICE</u>: Find the magnitude & direction of the net gravitational force on the center 5-kg mass in the rectangle below.

STEPS FOR 2D GRAV.

- 1) Label Forces
- 2) Calculate Forces
- 3) Decompose & Symmetry
- 4) Add Components \rightarrow F_{net}