CONCEPT: ELECTRIC FLUX

- Flux is a measure of HOW MUCH of a field passes through a surface.
 - ELECTRIC FLUX is how much of the ELECTRIC FIELD passes through a surface.

• ELECTRIC FLUX depends upon the ANGLE of the surface

- Normal \rightarrow _____ to the surface
- θ \rightarrow between the Electric Field and the _____ of the surface

- The TOTAL FLUX through a closed surface is the _____ of fluxes through each individual surface.
 - Positive fluxes: when \vec{E} and the normal point in the [SAME | OPPOSITE] direction.

- Negative fluxes: when \vec{E} and the normal point in the [SAME | OPPOSITE] direction.

EXAMPLE: The electric flux through each surface of a cube is given below. What is the total flux through the cube?

$$\Phi_1 = 100 \ Nm^2/C$$
 $\Phi_2 = 20 \ Nm^2/C$

$$\Phi_2 = 20 Nm^2/C$$

$$\Phi_3 = 0 Nm^2/C$$

$$\Phi_4 = 0 Nm^2/C$$

$$\Phi_5 = -40 \ Nm^2/C$$
 $\Phi_6 = -80 \ Nm^2/C$

$$\Phi_6 = -80 \, Nm^2/C$$

PRACTICE: TOTAL ELECTRIC FLUX

The electric flux through each surface of a cube is given below. Which surfaces of the cube does the electric field run parallel to?

$$\Phi_1 = 100 \, Nm^2/C$$

$$\Phi_2 = 20 Nm^2/C$$

$$\Phi_3 = 0 Nm^2/C$$

$$\Phi_{\rm A}=0~Nm^2/C$$

$$\Phi_1 = 100 \ Nm^2/C$$
 $\Phi_2 = 20 \ Nm^2/C$ $\Phi_3 = 0 \ Nm^2/C$ $\Phi_4 = 0 \ Nm^2/C$ $\Phi_5 = -40 \ Nm^2/C$ $\Phi_6 = -80 \ Nm^2/C$

$$\Phi_6 = -80 \ Nm^2/C$$

EXAMPLE: FLUX THROUGH ANGLED SURFACE

What is the magnitude of the electric flux through the surface depicted below?

EXAMPLE: FLUX THROUGH CUBE

A cube of side length 2 cm is placed in an electric field of magnitude 100 N/C as shown below. What is the electric flux through each side of the cube?

PRACTICE: NORMAL OF A SPHERICAL SHELL

Where does the normal vector point for a spherical shell?

EXAMPLE: FLUX THROUGH SPHERICAL SHELL BY POINT CHARGE

What is the electric flux through a spherical shell of radius R due to a point charge, q, at the center?

PRACTICE: FLUX THROUGH TWO SURFACES

What is the total flux through the two surfaces depicted in the following figure? Note that surface 1 has an area of 50 cm^2 and surface 2 has an area of 100 cm^2 , and E = 500 N/C.

