CONCEPT: CIRCULAR MOTION IN MAGNETIC FIELDS - Remember: Magnetic Force on a moving charge is ALWAYS perpendicular (90°) to its velocity (RHR). - Because of this, moving charges in a Magnetic Field experience CIRCULAR Motion: $\rightarrow \sum \mathbf{F} = \mathbf{ma}$: $$\times$$ \times \times $$\times$$ \times \times $$\times$$ \times \times $$\times$$ \times \times <u>EXAMPLE</u>: In an experiment, an electron enters a uniform 0.2 T magnetic field directed perpendicular to its motion. You measure the electron's deflection to have a circular arc of radius 0.3 cm. How fast must the electron be moving? - If a charge moves PERPENDICULAR to the Magnetic Field - ____ - If a charge moves PARALLEL to the Magnetic Field - **→** _____ - If a charge moves AT AN ANGLE to the Magnetic Field - **→** • Remember: Work done by ANY Force - \rightarrow W_F = F \triangle x cosΘ - Work done by Magnetic Force on a moving charge - → W_F =