CONCEPT: RELEASING OR LAUNCHING PROJECTILES FROM MOVING VEHICLES

- You'll need to solve problems where projectiles are launched from vehicles already moving with velocity (_____).
 - IF a projectile is simply dropped/released, then the moving vehicle and projectile move at the _____ velocity.

ullet v_{proj} is the _____ of the launch velocity and the velocity it BORROWS from the moving vehicle.

<u>EXAMPLE</u>: A cart carrying a vertical missile launcher moves horizontally at a constant 60m/s to the right. The missile launches vertically upward at 80 m/s. What is the maximum height achieved by the rocket?

PROJECTILE MOTION

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		VECTOR EQs
Χ	Υ	$\vec{A}_{lacksquare}$
$\Delta x = v_x t$	(1) $v_y = v_{0y} + a_y t$ (2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$ (3) $\Delta y = v_{0y} t + \frac{1}{2} a_y t^2$	$A = \sqrt{A_x^2 + A_y^2}$
	*(4) $\Delta y = \frac{1}{2} (v_{0y} + v_f)t$	$\theta_x = \tan^{-1} \left(\frac{ A_y }{ A_x } \right)$ $A_y = A \cos(\theta_x)$

 $A_{y} = A \sin(\theta_{x})$

<u>PROBLEM</u>: A small plane flies horizontally at 20m/s at an altitude of 200m, when it launches a projectile at a speed of 65 m/s at 22.6° below the horizontal. What horizontal distance does the projectile travel before hitting the ground?

- **A)** 752 m
- **B)** 344 m
- **C)** 184 m
- **D)** 920 m

PROJECTILE MOTION

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation

 $A_x = A \cos(\theta_x)$ $A_y = A \sin(\theta_x)$

4) Solve

UAM EQUATIONS		VECTOR EQs
Χ	Υ	\vec{A} \blacksquare
$\Delta x = v_x t$	$\begin{aligned} &\text{(1) } v_y = v_{0y} + a_y t \\ &\text{(2) } v_y^2 = v_{0y}^2 + 2 a_y \Delta y \\ &\text{(3) } \Delta y = v_{0y} t + \frac{1}{2} a_y t^2 \\ &\text{^*(4) } \Delta y = \frac{1}{2} \big(v_{0y} + v_f \big) t \end{aligned}$	$A = \sqrt{A_x^2 + A_y^2}$
		$\theta_x = \tan^{-1}\left(\frac{ A_y }{ A_x }\right)$