CONCEPT: COMBINING CAPACITORS IN SERIES AND PARALLEL

• In Circuit problems, we can COLLAPSE / COMBINE capacitors into a SINGLE ______ capacitor.

SERIES CONNECTION	PARALLEL CONNECTION
- Direct connection,	- Splits off, forms a loop
- Equivalent Capacitance:	- Equivalent Capacitance:
$\frac{1}{c} = $	$C_{eq} = \underline{\hspace{1cm}}$
Ceq	

 \bullet For circuits with combinations, find $C_{eq}\mbox{'s}$ from inside \rightarrow outside.

EXAMPLE: What is the equivalent capacitance of the following capacitors?

ullet For TWO capacitors in SERIES, $C_{eq} =$ _____

 $\underline{\sf EXAMPLE} \hbox{: What is the equivalent capacitance of the following capacitors?}$

EXAMPLE: EQUIVALENT CAPACITANCE OF 4 CAPACITORS

What is the equivalent capacitance of the following combination of capacitors?

PRACTICE: EQUIVALENT CAPACITANCE OF 4 CAPACITORS

What is the equivalent capacitance of the following capacitors?

