CONCEPT: POSITION-TIME GRAPHS & VELOCITY

• Position-time graphs show an object's _____ in the y-axis versus ____ in the x-axis.

Ex. "You walk 6m forward in 3s, stop for 1s, then run 6m back in 1s."

- ullet Velocity: $v_{avg}=rac{\Delta x}{\Delta t}
 ightarrow -------=$ of the position graph
 - Upward Slope → [moving FORWARD | STOPPED | moving BACKWARD]
 - Horizontal / Flat Slope → [moving FORWARD | STOPPED | moving BACKWARD]
 - Downward Slope → [moving FORWARD | STOPPED | moving BACKWARD]

EXAMPLE: For the given position-time graph, calculate v_{avg} :

- a) from t=0 to t=2s
- **b)** from **t=2** to **t=4s**
- c) from t=4 to t=5s

- d) for the entire motion
- Can get \vec{v}_{avg} between \underline{any} two points if you know Δx and $\Delta t!$
 - Steeper slopes = velocity has [HIGHER | LOWER] magnitude (Number only)
 - Flatter slopes = velocity has [HIGHER | LOWER] magnitude (Number only)

<u>PRACTICE</u>: The position-time graph for a moving box is shown below.

- a) What is the box's velocity from 0 to 5s?
- **b)** What is the box's velocity from 0 to 8s?
- c) What is the box's velocity in the interval where it's moving fastest?

CONCEPT: CURVED POSITION-TIME GRAPHS & ACCELERATION

• Position graph is **curved** (not straight lines) when the velocity is _____ (acceleration is **NOT** zero).

• Straight lines $\rightarrow v$ = constant, a = 0

- \bullet Curving $\underline{\mathsf{UP}}$ (Smiley $\circledcirc) \to$ [<code>POSITIVE</code> | <code>NEGATIVE</code>] acceleration
- Curving DOWN (Frowny

) → [POSITIVE | NEGATIVE] acceleration

CONCEPT: POSITION-TIME GRAPHS & INSTANTANEOUS VELOCITY

• There are 2 different types of velocity you'll need to calculate in position-time graphs.

→ between <u>TWO</u> points

• $\vec{v}_{avg} = \frac{\Delta x}{\Delta t}$ = slope of line between 2 points

INSTANTANEOUS Velocity

 \rightarrow at <u>ONE</u> point (instant)

- \vec{v} = slope of tangent line \Rightarrow line touches graph ONLY _____
 - Use an approximated line (best guess) if not given

EXAMPLE: Using the position-time graph for a moving object,

- a) Calculate the object's velocity between t=10 & t=25
- **b)** Calculate the object's velocity at t=10
- c) Calculate the object's velocity at t=5

ullet $ec{oldsymbol{v}}=0$ at ______ of position graph.

PRACTICE: The position-time graph for a ball on a track is shown below.

- a) What is the ball's velocity at t=4s?
- b) At what time(s) is the ball approximately travelling at -10m/s?

c) From t = 3 to 7s, what is the sign of the acceleration?