CONCEPT: Mass Distributions with Calculus

• For non-spherical distributions of mass, we use calculus to calculate the Gravitational Force.

<u>EXAMPLE</u>: Calculate the gravitational force on a mass **m** at a distance **D** along the axis passing through the center of a ring of mass **M** and radius **R**.

1) Write
$$F=\int dF=Gm\!\int \frac{dM}{r^2}$$

- 2) Pick 2 dM's, write an expression for r using the problem's geometry (save this for later!)
- 3) Break $\int dF$ into $\int dF_x \& \int dF_y$, cancel symmetrically opposite components
- 4) Expand F_x or F_y into sin & cos; rewrite $sin(\theta)$ or $cos(\theta)$ in terms of the side lengths given
- 5) Plug in expression for ${\bf r}$ from Step 2, then pull all constants out of the integral
- **6a)** If you're only left with $\int dM$, replace $\int dM \to M$, and you're done!
- **6b)** Otherwise, change differential **dM** to match the *changing* variable of integration using **density**:

$$dM = \lambda dx = \frac{M}{L} dx \ = \sigma dA = \frac{M}{A} dA \ = \rho dV = \frac{M}{V} dV$$

- 7) Determine limits of integration
- 8) Use integration techniques or tables to integrate

<u>EXAMPLE</u>: a) Set up the integral expression for the gravitational force between a rod of mass **M** and length **L** and a mass **m** at an arbitrary distance **D** from the end of the rod. b) Evaluate the integral.

1) Write
$$F = \int dF = Gm \int \frac{dM}{r^2}$$

- 2) Pick 2 dM's, write an expression for r using the problem's geometry (save this for later!)
- 3) Break $\int dF$ into $\int dF_x \& \int dF_y$, cancel symmetrically opposite components
- 4) Expand dF_x or dF_y into sin & cos; rewrite $sin(\theta)$ or $cos(\theta)$ in terms of the side lengths given
- 5) Plug in expression for ${\bf r}$ from Step 2, then pull all constants out of the integral
- **6a)** If you're only left with $\int dM$, replace $\int dM \to M$, and you're done!
- **6b)** Otherwise, change differential **dM** to match the *changing* variable of integration using **density:**

$$dM = \lambda dx = \frac{M}{L} dx \ = \sigma dA = \frac{M}{A} dA \ = \rho dV = \frac{M}{V} dV$$

- 7) Determine limits of integration
- 8) Use integration techniques or tables to integrate

<u>PRACTICE</u>: a) Set up the integral for the gravitational force between a rod with a density λ and length **2L**, and a mass m at an arbitrary distance **D** directly above the midpoint of the rod. b) Evaluate the integral $(\underline{Hint:} \int \frac{dx}{(x^2+D^2)^3/2} = \frac{x}{D^2\sqrt{x^2+D^2}})$

1) Write
$$F = \int dF = Gm \int \frac{dM}{r^2}$$

- 2) Pick 2 dM's, write an expression for r using the problem's geometry (save this for later!)
- 3) Break $\int dF$ into $\int dF_x \& \int dF_y$, cancel symmetrically opposite components
- 4) Expand F_x or F_y into sin & cos; rewrite $sin(\theta)$ or $cos(\theta)$ in terms of the side lengths given
- **5)** Plug in expression for **r** from Step 2, then pull all constants out of the integral
- **6a)** If you're only left with $\int dM$, replace $\int dM \to M$, and you're done!
- **6b)** Otherwise, change differential **dM** to match the *changing* variable of integration using **density:**

$$dM = \lambda dx = \frac{M}{L} dx \ = \sigma dA = \frac{M}{A} dA \ = \rho dV = \frac{M}{V} dV$$

- 7) Determine limits of integration
- 8) Use integration techniques or tables to integrate

<u>EXAMPLE</u>: What is the gravitational force between a solid disk of mass **M** and radius **R**, and a mass **m** located a distance **D** measured along the axis passing through the center of the disk? (*Hint:* Think of the disk as being made up of many very thin concentric rings of radius **r**', and add up all the rings.)

1) Write
$$\mathbf{F} = \int d\mathbf{F} = \mathbf{Gm} \int \frac{d\mathbf{M}}{\mathbf{r}^2}$$

- **2)** Pick 2 **dM**'s, write an expression for **r** using the problem's geometry (save this for later!)
- 3) Break $\int d\mathbf{F}$ into $\int d\mathbf{F}_x & \int d\mathbf{F}_y$, cancel symmetrically opposite components
- 4) Expand dF_x or dF_y into sin & cos; rewrite $sin(\theta)$ or $cos(\theta)$ in terms of the side lengths given
- **5)** Plug in expression for **r** from Step 2, then pull all constants out of the integral
- **6a)** If you're only left with $\int dM,$ replace $\int dM \to M,$ and you're done!
- **6b)** Otherwise, change differential **dM** to match the *changing* variable of integration using **density**:

$$dM = \lambda dx = \frac{M}{L} dx \ = \sigma dA = \frac{M}{A} dA \ = \rho dV = \frac{M}{V} dV$$

- 7) Determine limits of integration
- 8) Use integration techniques or tables to integrate

