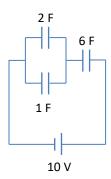
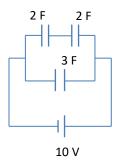
CONCEPT: SOLVING CAPACITOR CIRCUITS

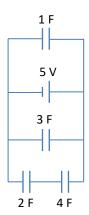

• In Circuit problems, you'll be asked to find CHARGE and VOLTAGE across combinations of capacitors.

SERIES CONNECTION	PARALLEL CONNECTION
- Equivalent Capacitance:	- Equivalent Capacitance:
$1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3$	$C_{eq} = C_1 + C_2 + C_3$
- Share [CHARGE VOLTAGE] with EACH OTHER	- Share [CHARGE VOLTAGE] with EACH OTHER
- Share [CHARGE VOLTAGE] with C _{eq}	- Share [CHARGE VOLTAGE] with C _{eq}
-	- - - - - +

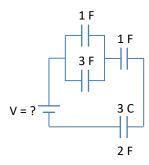
STEPS FOR CAPACITOR CIRCUITS


- 1) Find SINGLE EQUIVALENT capacitor
- 2) Find V & Q for Ceq
- 3) Work backwards to find V & Q for each capacitor

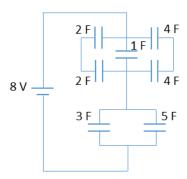
EXAMPLE: What is the charge and voltage of each of the capacitors in the following circuit?


PRACTICE: FIND CHARGE & VOLTAGE IN ALL CAPACITORS

What is charge and voltage across each capacitor below?


EXAMPLE: FIND CHARGE OF ONE CAPACITOR

What is the charge on the 3 F capacitor below?


PRACTICE: FIND VOLTAGE OF THE BATTERY

What is the voltage of the battery below?

PRACTICE: FIND CHARGE OF CAPACITOR IN A COMPLEX ARRANGEMENT

What is the charge on the 5 F capacitor?

