CONCEPT: LRC CIRCUITS IN SERIES

• In a series LRC circuit, the ______ through each element is the same

- In a DC circuit, we would simply say that $V_{LRC} = V_L + V_R + V_C$, since they are all in series In an AC circuit, this isn't true, since the maximum voltages occur at different times
 - In a series LRC circuit, the MAXIMUM voltage is

$$-V_{LRC} = \underline{\hspace{1cm}}$$

- The IMPEDANCE, Z, acts like the effective reactance of the circuit.
 - In a series LRC circuit, the impedance is

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

ightarrow The maximum current produced by the source is given by $i_{MAX} =$

<u>EXAMPLE</u>: A circuit is formed by attaching an AC source in series to an 0.5 H inductor, a 10 Ω resistor and a 500 μ F capacitor. If the source operates at a V_{RMS} of 120 V and a frequency of 60 Hz, what is the maximum current in the circuit?

PRACTICE: VOLTAGE IN A SERIES LRC AC CIRCUIT

An AC source operates at an RMS voltage of 70 V and a frequency of 85 Hz. If the source is connected in series to a 20 Ω resistor, a 0.15 H inductor and a 500 μ F capacitor, answer the following questions:

- a) What is the maximum current produced by the source?
- b) What is the maximum voltage across the resistor?
- c) What is the maximum voltage across the inductor?
- d) What is the maximum voltage across the capacitor?