


#### **CONCEPT: KINETIC FRICTION**

• Kinetic friction (\_\_\_\_\_) is a resisting force that occurs when <u>rough</u> surfaces \_\_\_\_\_\_ against each other.

-  $f_k$  tries to \_\_\_\_\_ all motion between the surfaces, so its direction is always \_\_\_\_ of  $\vec{v}$ .







- μ<sub>k</sub> = \_\_\_\_\_ of kinetic friction: measure of roughness between 2 surfaces, unitless # between \_\_\_ & \_\_\_,

Perfectly smooth surfaces:  $\mu_k$  is [ ZERO | LOW | HIGH ] lce rubbing on ice:  $\mu_k$  is [ ZERO | LOW | HIGH ] Cinderblock on cinderblock:  $\mu_k$  is [ ZERO | LOW | HIGH ]

<u>EXAMPLE</u>: A 10-kg box moves on a flat surface at 2 m/s. The coefficient of kinetic friction between the box and the surface is 0.4. Calculate (a) the kinetic friction force acting on the box and (b) the acceleration of the box.

#### **FORCES**

- 1) Draw FBD
- 2) Write  $\Sigma F = ma$
- 3) Solve

<u>PROBLEM</u>: Pushing a 10-kg toolbox across the floor, you find that the box moves at a constant speed when you push horizontally with a force of 39 N. What is the coefficient of kinetic friction between the floor and the toolbox?

- **A)** 0.2
- **B)** 0.4
- **C)** 2.5

## **FORCES**

- 1) Draw FBD
- 2) Write  $\Sigma F = ma$
- 3) Solve

<u>PROBLEM</u>: You push on a 3-kg box to give it an initial speed of 5 m/s across a floor. If  $\mu_k$  = 0.3, how far does the box travel before coming to a stop?

- **A)** 8.6 m
- **B)** 2.9 m
- **C)** 7.7 m
- **D)** 4.3 m

## FORCES

- 1) Draw FBD
- 2) Write  $\Sigma F = ma$
- 3) Solve

EXAMPLE: A 20-kg box moving along the floor has a downward force of 30N acting on it. How hard must you push the box horizontally to keep the box moving at a constant 2m/s if the coefficient of kinetic friction  $\mu_k$  is 0.3?

- **A)** 67.8 N
- **B**) 58.8 N
- **C)** 49.8 N
- **D**) 30 N

# **FORCES**

- 1) Draw FBD
- 2) Write  $\Sigma F = ma$
- 3) Solve

ullet Never assume that **N** = **mg**, therefore  $f_k = \mu(mg)!$  Remember to always calculate N using **\SigmaF** = **ma**.