CONCEPT: ROLLERCOASTER PROBLEMS

- Most rollercoaster problems involve objects moving in <u>curved</u> AND/OR <u>circular paths</u>, which we know how to solve!
 - You'll solve Circular path problems using **ΣF=ma** or **Energy**, depending on the given/target variables:

EXAMPLE: A rollercoaster cart without seat belts goes around a loop-de-loop of radius R = 5m. Calculate:

a) the minimum speed the cart needs at point B so that any passengers would not fall

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve

Circ. Motion / Centripetal Forces

$$a_C = \frac{v_T^2}{R} = \frac{4\pi^2 R}{T^2} = 4\pi^2 R f^2$$

$$T = \frac{1}{f} \iff f = \frac{1}{T}$$

$$v_T = \frac{c}{T} = \frac{2\pi R}{T} = 2\pi R f$$

b) minimum height the cart needs at point A so that it reaches point B with the minimum speed found

- When solving for the *minimum height* of a point needed to reach another, we assume v = __, so K = __.
- ullet The Height of the LOOP is _____ the radius: H_{Loop} = ____

<u>PROBLEM</u>: A cart goes around a loop-de-loop of radius R. If the cart stays <u>locked to the tracks</u>, derive an expression for the minimum speed required at the bottom of the loop in order for the cart to just barely reach the top.

