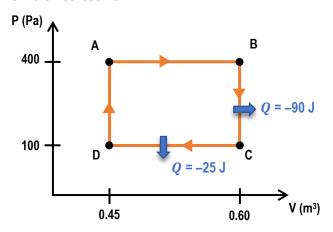

CONCEPT: CALCULATING WORK IN HEAT ENGINES USING PV DIAGRAMS

- Remember: Heat engines are cyclic processes. On PV diagrams, they <u>always</u> run in ______loops.
- Remember: For heat engines, $W = Q_H Q_C = Q_{IN} Q_{OUT}$.

 Q_H = heat added INTO the system (from Hot Reservoir), i.e. the <u>SUM</u> of all [+ | -] Qs over the cycle.

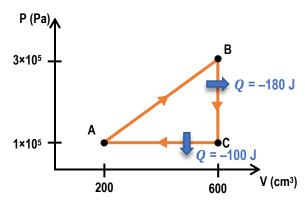
 Q_C = heat removed OUT of the system (to Cold Reservoir), i.e. the <u>SUM</u> of all [+|-] Qs over the cycle.


<u>EXAMPLE</u>: 2 mol of a monoatomic gas follows the cyclic process used in a heat engine. Heat is removed from the gas at constant pressure from $A \rightarrow B$, added at constant volume from $B \rightarrow C$, then the gas expands isothermally from $C \rightarrow A$, doing 2300J of work, and repeats. Calculate **a)** the heat transfer of each process; **b)** the total work done by the heat engine.

process, by the total work done by the fleat engine.							
	lso-P		lso-V	lso-T	Adiabatic (Q=0)		
1	· • • • • • • • • • • • • • • • • • • •	 >∨	P • • • • • • • • • • • • • • • • • • •		P 111		
Δ	E_{int}	Q – W	$\Delta E_{int} = Q$	0	$\Delta E_{int} = -W$		
	Q	$nC_P\Delta T$	$nC_V\Delta T$	Q = W	0		
	W	PΔV	0	$nRT \cdot \ln\left(\frac{v_f}{v_i}\right)$	$-nC_V \Delta T \frac{OR}{1}$ $\frac{1}{\gamma - 1} (P_i V_i - P_f V_f)$		
					$P_i V_i^{\gamma} = P_f V_f^{\gamma}$		

GAS TYPE	c_v	C_P				
Monoatomic	$\frac{3}{2}R$	$\frac{5}{2}R$				
Diatomic	$\frac{5}{2}R$	$\frac{7}{2}R$				
EQs & Constants						
$\Delta E_{int,OF} = Q_{TO} - W_{BY}$						
$\Delta E_{int} = 0$						
$ W = Q_H - Q_C $						
$e = \frac{\text{output}}{\text{input}} = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$						
$K = \frac{Q_C}{W}$						
$K_{HP} = \frac{Q_H}{W}$						
R = 8.314						

<u>PROBLEM</u>: For the heat engine shown in the PV diagram below, calculate: **a)** the work done; **b)** the total heat transferred from the hot reservoir.



HEAT ENGINES $\Delta E_{int} = 0$ $|W| = |Q_H| - |Q_C|$ $e = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$ $Q = nC_V \Delta T \qquad \text{(Constant V)}$ $Q = nC_P \Delta T \qquad \text{(Constant P)}$

 $W = -nRT \ln \left(\frac{V_f}{V_i}\right)$ (Constant T)

PROBLEM: A heat engine follows the cycle shown below. What is the thermal efficiency (%) of this engine?

- **A)** 58.8%
- **B)** 99.9%
- **C)** 14.3%
- **D)** 12.5%

HEAT ENGINES $\Delta E_{int} = 0$ $|W| = |Q_H| - |Q_C|$ $e = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$ $Q = nC_V \Delta T \qquad \text{(Constant V)}$ $Q = nC_P \Delta T \qquad \text{(Constant P)}$ $W = -nRT \ln \left(\frac{V_f}{V_i}\right) \text{(Constant T)}$