CONCEPT: STACKED BLOCKS

 When objects ar 	re stacked on ton c	of each other, the force	ce that causes the top objects to m	ove is
 writeri objects ar 	e siackeu on ioo c	n each omer me lord	te mai causes me ion objects to m	OVE IS

- Unlike for previous problems, friction acts in the [SAME | OPPOSITE] direction as the direction of motion!
- Friction is [KINETIC | STATIC] when the *relative* velocity between 2 surfaces is [NOT ZERO | ZERO].
- Friction is [KINETIC | STATIC] when the *relative* velocity between 2 surfaces is [NOT ZERO | ZERO].

<u>EXAMPLE</u>: A 10kg box rests on a frictionless floor, with a 5kg box on top of it. The coefficients of friction **between the boxes** are $\mu_s = 0.7$ and $\mu_k = 0.3$. You pull the bottom box with a force **F.** What is the maximum acceleration the bottom box can have so that the 2 boxes remain moving together, i.e. the top box does *not* slide on the bottom box?

CONNECTED OBJECTS + FRICTION

- 1) Draw FBD for all obj's, choose direction of +
- 2) Determine if $f = f_s$ or f_k from text or: If Σ Fs on axis of motion > $f_{s,max}$, $f = f_k$
- 3) Write ΣF=ma, start with simplest (fewest Fs)
- 4) Solve a (EQ Addition / Substitution)
- 5) Plug a into eq's, solve other targets if needed

• The friction between the stacked blocks always depends on the ______ between the blocks.

<u>PROBLEM</u>: A 5kg block **A** is placed on a 10kg block **B**. Block A is tied to a wall, while Block B is pulled with a Force of 45N and moves to the right. The coefficient of kinetic friction between all surfaces is $\mu_k = 0.2$. What is the Tension on Block A?

- **A)** 45 N
- **B)** 9.8 N
- **C)** 49 N
- **D)** 1.8 N

CONNECTED OBJECTS + FRICTION

- 1) Draw FBD for all obj's, choose direction of +
- 2) Determine if $f = f_s$ or f_k from text or: If Σ Fs on axis of motion > $f_{s,max}$, $f = f_k$
- 3) Write ΣF=ma, start with simplest (fewest Fs)
- 4) Solve a (EQ Addition / Substitution)
- 5) Plug a into eq's, solve other targets if needed

<u>PROBLEM</u>: A 4kg block sits on top of a 6kg block which is on a frictionless surface. The coefficients of friction between the two blocks are μ_s =0.5 and μ_k =0.3. Calculate the maximum force you can pull on the bottom block with so that the objects move together.

- **E)** 49 N
- **F)** 19.6 N
- **G)** 3.27 N
- **H)** 4.9 N

CONNECTED OBJECTS + FRICTION

- 1) Draw FBD for all obj's, choose direction of +
- 2) Determine if $f = f_s$ or f_k from text or: If Σ Fs on axis of motion > f_{s,max}, $f = f_k$
- 3) Write ΣF=ma, start with simplest (fewest Fs)
- 4) Solve a (EQ Addition / Substitution)
- 5) Plug a into eq's, solve other targets if needed