#### **CONCEPT: EQUILIBRIUM**

- IF all the forces acting on an object \_\_\_\_\_, the object is at **EQUILIBRIUM**: \_\_\_\_ ⇔ \_\_\_\_
  - Equilibrium **DOESN'T** mean an object isn't *moving* (v = 0)! It means the object isn't *accelerating* ( $a = _)!$

$$\Sigma F = ma$$

- In some problems, you'll know ΣF=0, which means \_\_\_\_\_

$$\Sigma F = ma$$

- In other problems, you'll know **a=0**, which means \_\_\_\_\_

#### **EXAMPLE:**

a) Two equal forces pull on a box moving at a constant 5m/s. Assuming the box has no weight, calculate the box's acceleration.



**b)** A 2kg book rests on a table and stays at rest. Assuming the book has weight, calculate the forces acting on the book.



### **FORCES**

- **1)** Draw FBD: W,F<sub>A</sub>,T,N,*f*
- 2) Write  $\Sigma F = ma$
- 3) Solve

PROBLEM: A 3-kg box of junk is being lowered on a string at a constant speed. What is the tension in the string?

- **A)** 0 N
- **B)** 3 N
- **C)** 29 N
- **D)** 32 N

#### **FORCES**

- 1) Draw FBD: W,FA,T,N,f
- 2) Write  $\Sigma F = ma$
- 3) Solve

<u>PROBLEM</u>: A loudspeaker is held in place by four vertical cables. The tension in each cable is 30 N. What is the mass of the loudspeaker?

- **A)** 3.06 kg
- **B)** 12.2 kg
- **C)** 30 kg
- **D)** 120 kg

## **FORCES**

- 1) Draw FBD: W,FA,T,N,f
- 2) Write  $\Sigma F = ma$
- 3) Solve

# **CONCEPT: THE NORMAL FORCE**

| • IF anything is pushed against a surface in ANY direction, the surface pushes back with a force called() |                                                                      |                                                                 |                                                             |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                           | $\overrightarrow{N}$ ! Always calculate $\overrightarrow{N}$ using Σ | Surface.<br>F=ma.                                               |                                                             |
| <b>EXAMPLE: a)</b> A 2.04kg book rests on a table. Calculate <b>N</b> .                                   | <b>b)</b> You push the book down with 10N. Calculate <i>N</i> .      | <b>c)</b> You pull the book up with 15N. Calculate <b>N</b> .   | <b>d)</b> You pull up with 30N. Calculate the acceleration. |
| 77777777777                                                                                               | 777777777777777777777777777777777777777                              | 77777777777                                                     | 777777777777777777777777777777777777777                     |
|                                                                                                           |                                                                      |                                                                 |                                                             |
| <ul><li>No other applied forces:</li><li>N mg</li></ul>                                                   | - Push down (F <sub>y</sub> along with <b>mg</b> ):  **N mg          | - Pull up, not enough to lift ( F <sub>y</sub>   <  mg ):  N mg | - Pull up, enough to lift ( F <sub>y</sub>   ≥  mg ):  N    |
| , ing                                                                                                     | ,                                                                    | 74 1119                                                         | 14                                                          |