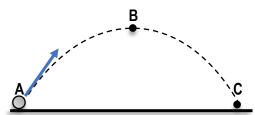
CONCEPT: USING SPECIAL EQUATIONS IN SYMMETRICAL LAUNCH PROBLEMS

• For symmetrical launches <u>ONLY</u> $(y_f = y_0)$, remember: $t \uparrow = t \downarrow$


 $|v_c|$ = $|v_a|$

 $\theta_c = -\theta_a$

- In addition, there are even more special equations you may be allowed to use!

EXAMPLE: A catapult launches a projectile with 100m/s at 53° upwards. The projectile later returns to the ground. Find:

a) the time the projectile hits the ground

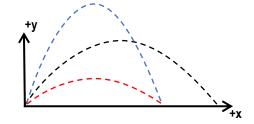
TOTAL TIME OF FLIGHT

$$t_{sym} = \Delta t_{AC} =$$

b) horizontal range of the projectile

c) the other launch angle that gives the same range

TOTAL HORIZONTAL **DISPLACEMENT (aka RANGE)**


If you have t_{AC} :

$$R_{sym} = \Delta x_{AC} = v_x t_{AC}$$

If you don't have t_{AC} :

$$R_{sym} = \Delta x_{AC} =$$

- MAXIMUM when launch angle θ = ____.
- Complementary angles (i.e. θ_1 + θ_2 = ____, e.g ____& ___) achieve same R for same v_0 .

PROBLEM: A frog leaves the ground with a speed of 15 m/s and stays in the air for 2.0s. At what angle did the frog jump?

- **A)** 40.8°
- **B)** 9.4°
- **C)** 19.1°

SPECIAL EQUATIONS

$$t_{\text{sym}} = \Delta t_{AC} = \frac{2v_0 sin\theta}{g}$$

$$t_{\text{sym}} = \Delta t_{AC} = \frac{2v_0 sin\theta}{g}$$
 $R_{sym} = \Delta x_{AC} = \frac{v_0^2 sin(2\theta)}{g}$

PROBLEM: A champion long-jumper competing on Planet X is capable of leaving the ground with a speed of 6 m/s. The maximum distance he can cover on Planet X turns out to be 9 m. What is the gravity on Planet X?

- **A)** 0.75 m/s²
- **B)** 4.0 m/s²
- **C)** 2.1 m/s^2
- **D)** 12 m/s²

$$t_{\mathrm{sym}} = \Delta t_{AC} = \frac{2v_0 sin\theta}{g}$$

$$t_{\text{sym}} = \Delta t_{AC} = \frac{2v_0 sin\theta}{g}$$
 $R_{sym} = \Delta x_{AC} = \frac{v_0^2 sin(2\theta)}{g}$

PROBLEM: A golf ball is hit at ground level at an angle of 31.9° above the horizontal. Its range is 257 m over a level green. What was the magnitude of the golf ball's initial velocity?

- **A)** 2807 m/s
- **B)** 69 m/s
- **C)** 95 m/s
- **D)** 53 m/s

SPECIAL EQUATIONS

$$t_{\text{sym}} = \Delta t_{AC} = \frac{2v_0 sin\theta}{g}$$

$$t_{\text{sym}} = \Delta t_{AC} = \frac{2v_0 sin\theta}{g}$$
 $R_{sym} = \Delta x_{AC} = \frac{v_0^2 sin(2\theta)}{g}$